
F3 Faculty of Electrical Engineering
Department of Measurement

Master’s Thesis

Design and Implementation of
Systems for Railway Fail-Safe
Platforms

Bc. Petr Kučera
Open Informatics
Computer Engineering

November 2024, May 2025
Supervisor: doc. Ing. Jiří Novák, Ph.D. and Ing. Bc. Martin Votava





ZADÁNÍ DIPLOMOVÉ PRÁCE 

I. OSOBNÍ A STUDIJNÍ ÚDAJE 

499325 Osobní číslo:​Petr Jméno:​Kučera Příjmení:​

Fakulta elektrotechnická Fakulta/ústav:​

Zadávající katedra/ústav: Katedra měření 

Otevřená informatika Studijní program:​

Počítačové inženýrství Specializace:​

II. ÚDAJE K DIPLOMOVÉ PRÁCI 

Název diplomové práce:​

Návrh a implementace systémů pro platformy v železniční infrastruktuře odolné vůči selhání  

Název diplomové práce anglicky:​

Design and Implementation of Systems for Railway Fail-Safe Platforms  

Jméno a pracoviště vedoucí(ho) diplomové práce:​

doc. Ing. Jiří Novák, Ph.D.     katedra měření   FEL 

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:​

   

Termín odevzdání diplomové práce:  23.05.2025 Datum zadání diplomové práce:  29.01.2025 

Platnost zadání diplomové práce:  20.09.2026 

podpis proděkana(ky) z pověření děkana(ky)​podpis vedoucí(ho) ústavu/katedry​

III. PŘEVZETÍ ZADÁNÍ 

Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.​
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.​
 ​

Bc. Kučera Petr​
Podpis studenta​Datum převzetí zadání​

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 1 z 3 CVUT-CZ-ZDP-2015.1 

Digitálně podepsal(a) 
Jan Holub 
Datum: 02.04.2025 
06:19:41 

Digitálně podepsal(a) 
Jiří Jakovenko 
Datum: 04.04.2025 
08:25:31 

29.04.2025



ZADÁNÍ DIPLOMOVÉ PRÁCE 

I. OSOBNÍ A STUDIJNÍ ÚDAJE 

499325 Osobní číslo:​Petr Jméno:​Kučera Příjmení:​

Fakulta elektrotechnická Fakulta/ústav:​

Zadávající katedra/ústav: Katedra měření 

Otevřená informatika Studijní program:​

Počítačové inženýrství Specializace:​

II. ÚDAJE K DIPLOMOVÉ PRÁCI 

Název diplomové práce:​

Návrh a implementace systémů pro platformy v železniční infrastruktuře odolné vůči selhání  

Název diplomové práce anglicky:​

Design and Implementation of Systems for Railway Fail-Safe Platforms  

Pokyny pro vypracování:​

1. Natudujte standardy implementace softwaru na platformách zabezpečených selhání pro železniční​
infrastrukturu. Identifikujte rozdíly mezi požadavky platformy SIL2 (SIL1) a SIL4 (SIL3). Diskutujte o konkrétních​
mechanismech, vedoucích k naplnění individuálních požadavků.​
2. Vyberte příslušný hardware (pro SIL2 a možná vyšší) a navrhněte architekturu, která splňuje požadavky​
CENELEC pro SIL2. Návrh by měl zahrnovat sekvenci a mechanismy pro detekci a zmírnění náhodných chyb​
a dalších identifikovaných problémů se softwarem. Navrhované zařízení by se mělo skládat z bezpečnostní​
části, odpovědné za provádění bezpečných výpočtů, a neefektivní části, odpovědné za monitorování​
bezpečnostní části a přenosu dat přes Ethernet.​
3. Implementujte navrženou architekturu softwaru na vybraném hardwaru.​
4. Zdůvodněte implementaci SIL2, analyzujte a diskutujte o možných krocích a rozšířené argumentaci k​
dosažení vyšší hladiny SIL.​

Seznam doporučené literatury:​

• CENELEC. EN 50129, Railway applications - Communication, signalling and processing systems - Safety​
related electronic systems for signalling. November 2018.​
• CENELEC. EN 50128, Railway applications - Communication, signalling and processing systems - Software​
for railway control and protection systems. June 2011.​
• CENELEC. EN 50126-1, Railway applications - The Specification and Demonstration of Reliability, Availability,​
Maintainability and Safety (RAMS) - Part 1: Generic RAMS Process. October 2017.​
• B. Evers, ”Hazard Modelling for Electronic Systems in Railway Operation and Control,” 2008 3rd IET​
International Conference on System Safety, Birmingham, 2008, pp. 1-5, doi: 10.1049/cp:20080741.​
• K. Rástočný, J. Ždánsky and J. Hrbček, ”The Problems Related to Realization of Safety Function with SIL4​
Using PLC,” 2020 Cybernetics & Informatics (K&I), Velke Karlovice, Czech Republic, 2020, pp. 1-5, doi:​
10.1109/KI48306.2020.9039878.​
• T. G. Markovits and G. Rácz, ”Safety principles for designing a generic product for railway signalling systems,”​
2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4), London,​
United Kingdom, 2021, pp. 134-139, doi:​
10.1109/WorldS451998.2021.9514005.​
• O. Morgan, ”Certified Testing of C Compilers for Embedded Systems,” 2007 3rd Institution of Engineering​
and Technology Conference on Automotive Electronics, Warwick, UK, 2007, pp. 1-5.​

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 2 z 3 CVUT-CZ-ZDP-2015.1 



• H.Ahangari, F.Atik, Y.I.Özkök, A.Yildirim, S.O.Ata and O.Ozturk, ”Analysis of Design Parameters in​
Safety-Critical Computers,” in IEEE Transactions on Emerging Topics in Computing, vol. 8, no.3, pp. 712-723,​
1 July-Sept. 2020, doi: 10.1109/TETC.2018.2801463.​
• H. Ahangari, Y. ˙I. Özkök, A. Yıldırım, F. Say, F. Atik and O. Ozturk, ”Analysis of design parameters in SIL-4​
safety-critical computer,” 2017 Annual Reliability and Maintainability Symposium (RAMS), Orlando, FL, USA,​
2017, pp. 1-8, doi: 10.1109/RAM.2017.7889787.​

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 3 z 3 CVUT-CZ-ZDP-2015.1 



FAKULTA ELEKTROTECHNICKÁ 
FACULTY OF ELECTRICAL ENGINEERING 
Technická 2 
166 27 Praha 6 

DECLARATION 

I, the undersigned 

Kučera Petr Student's surname, given name(s): 
499325 Personal number: 
Open Informatics Programme name: 

declare that I have elaborated the master’s thesis entitled 

Design and Implementation of Systems for Railway Fail-Safe Platforms 

independently, and have cited all information sources used in accordance with the Methodological Instruction 
on the Observance of Ethical Principles in the Preparation of University Theses and with the Framework Rules 
for the Use of Artificial Intelligence at CTU for Academic and Pedagogical Purposes in Bachelor’s and Continuing 
Master’s Programmes. 

I declare that I used artificial intelligence tools during the preparation and writing of this thesis. I verified the 
generated content. I hereby confirm that I am aware of the fact that I am fully responsible for the contents of 
the thesis. 

Bc. Petr Kučera In Prague on 23.05.2025 
................................................ 

student's signature 



Acknowledgement / Declaration

I express my gratitude to my thesis
advisor, doc. Ing. Jiří Novák, Ph.D.,
for taking on this project. I also thank
Ing. Bc. Martin Votava from Siemens
Mobility for his guidance and consul-
tations. Additionally, I am grateful
to Ing. Tomáš Hering and Ing. Jan
Volný from Siemens Mobility for their
regular consultations. Finally, I extend
my thanks to all those not specifi-
cally named who contributed to this
work, whether through discussions that
guided me in the right direction or
by providing direct advice on how to
proceed.

The declaration of independent work
and the use of artificial intelligence
tools, verified and generated in the
KOS system, is included in this thesis
on a separate sheet in accordance with
regulations.

vii



Abstrakt / Abstract

Diplomová práce se zabývá návrhem
monitorovacího systému pro světelnou
signalizaci železničního přejezdu s vyu-
žitím vícejádrového embedded zařízení.
První část práce se věnuje analýze
požadavků na systémy s funkční bez-
pečností (fail-safe design) v souladu
s platnými normami pro železniční apli-
kace. Následuje specifikace systémových
požadavků, výběr vhodné hardwarové
platformy a návrh softwarové archi-
tektury s důrazem na bezpečnostní
mechanismy. Třetí část se zaměřuje
na implementaci funkčního prototypu,
včetně bootovacího procesu. Závěrečná
část diskutuje strategie testování a ná-
vrhové přístupy, které přispívají ke
zvýšení úrovně bezpečnostní integrity
(SIL). Výstupem práce je návrh sys-
témové architektury a implementace
softwarového prototypu připraveného k
testování na cílovém embedded zařízení.

Klíčová slova: funkční bezpečnost,
návrh odolný vůči sehnáním, bezpečně
kritický vývoj, železniční přejezd, úro-
veň integrity bezpečnosti, železniční
standardy, CENELC, Sitara AM243x,
vestavěné zařízení, více jádrová archi-
tektura, jádro reálného času, izolované
jádro, nahrávání firmware, SPI komuni-
kace, bezpečnostní manuál

Překlad titulu: Návrh a implementace
systémů pro platformy v železniční in-
frastruktuře odolné vůči selhání

The diploma thesis focuses on the
design of a monitoring system for level
crossing signaling using a multi-core
embedded device. The first part an-
alyzes the requirements for systems
with functional safety (fail-safe design)
in compliance with applicable railway
application standards. This is fol-
lowed by the specification of system
requirements, selection of an appro-
priate hardware platform, and design
of a software architecture with an em-
phasis on safety mechanisms. The
third part concentrates on the imple-
mentation of a functional prototype,
including the boot process. The final
part discusses testing strategies and
design approaches that contribute to
achieving higher Safety Integrity Levels
(SIL). The outcomes of the thesis are
a proposed system architecture and an
implemented software prototype ready
for testing on the target embedded
device.

Keywords: Functional Safety, Fail-
Safe Design, Safety-Critical Develop-
ment, Railway Crossing, Safety In-
tegrity Level (SIL), Railway Standards,
CENELEC, Sitara AM243x, Embedded
System, Multi-Core Architecture, Real-
Time Core, Isolated Core, Firmware
Deployment, SPI Communication,
Safety Manual

viii



Contents /

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . 1

1.1.1 High Impact . . . . . . . . . 1
1.1.2 Strategic Importance . . . . 1
1.1.3 Personal Motivation . . . . . 2

1.2 The Aim of This Thesis . . . . . 2
2 Background Research 4

2.1 The Difference between Se-
curity and Safety . . . . . . . . . 4

2.2 Materials and Standards . . . . . 5
2.2.1 New Standard EN 50716 . . 5

2.3 RAMS . . . . . . . . . . . . . . . 6
2.4 Systematic and Random

Failures . . . . . . . . . . . . . . 7
2.4.1 RAMS Development Cycle . 7
2.4.2 The Five Base Questions . 10

2.5 Mechanisms to Achieve SIL
Level . . . . . . . . . . . . . . 10

2.5.1 The Principles in De-
veloping High-integrity
Software . . . . . . . . . . 11

2.5.2 Architecture . . . . . . . . 11
2.5.3 Software Architecture

Technique . . . . . . . . . 13
2.5.4 Tools Classification . . . . 20
2.5.5 Programming Technique . . 21

2.6 Level Crossing System in
CENELEC Countries . . . . . 22

3 System Requirements 25
3.1 System Context . . . . . . . . . 25
3.2 System Specification . . . . . . 25

3.2.1 Interface Specification . . . 26
3.2.2 Function Requirements . . 26
3.2.3 Human Interfaces . . . . . 27
3.2.4 Safety . . . . . . . . . . . . 27
3.2.5 Diagnostics . . . . . . . . . 27
3.2.6 Project Limitation . . . . . 27

3.3 Hazard Descriptions . . . . . . 28
3.3.1 State Analysis . . . . . . . 28

4 Hardware 29
4.1 Hardware Requirement . . . . . 29
4.2 Microcontroller Options . . . . 29
4.3 Microcontroller Description . . 30

4.3.1 The MAIN Domain . . . . 30
4.3.2 The MCU Domain . . . . . 31

4.4 ADC Module Description . . . 32
4.5 Hardware design . . . . . . . . 33

5 Device design and architecture 35
5.1 System Requirements Analysis 35
5.2 Booting . . . . . . . . . . . . . 36

5.2.1 ROM Boot . . . . . . . . . 36
5.2.2 SBL Boot . . . . . . . . . . 37
5.2.3 Boot Modes . . . . . . . . 37
5.2.4 Device Boot Phases . . . . 38
5.2.5 Boot Image Format . . . . 39
5.2.6 Detailed System Ini-

tialization Description . . . 40
5.2.7 Bootloader Function

Description . . . . . . . . . 42
5.2.8 Flash Memory . . . . . . . 43
5.2.9 Pseudo-atomic Flash

Update Operations . . . . . 44
5.2.10 Flash Writer Description . 44

5.3 Software Update Process . . . . 47
5.4 Safety Shutdown . . . . . . . . 50

5.4.1 External Monitor Device . 50
5.4.2 Safety Shutdown Pro-

cess Description . . . . . . 51
5.5 Initialization Test Sequence . . 53
5.6 Safe Software . . . . . . . . . . 55

5.6.1 Core Isolation Description . 55
5.6.2 Process Description . . . . 56

5.7 Non-SIL Software . . . . . . . . 57
5.8 Inter-Core Communication . . . 62
5.9 Safety Mechanisms and Re-

quirements . . . . . . . . . . . 65
5.9.1 TI Functional Safety

Constraints and As-
sumptions . . . . . . . . . 66

5.9.2 Safety Perspective
on Process Execution
Analysis . . . . . . . . . . 66

5.9.3 Functional Safety
Mechanism Examples . . . 70

5.10 Modular Architecture and
Component Design . . . . . . . 71

5.11 Architecture Notes . . . . . . . 72
6 Prototype Implementation 74

6.1 Prototype Specification . . . . 74
6.2 Architecture Overview . . . . . 74

ix



6.3 Development Environment
and Build System . . . . . . . 75

6.3.1 System Configuration
Tool (SysConfig) . . . . . . 76

6.3.2 Build Process . . . . . . . 77
6.3.3 Build Workflow . . . . . . 77

6.4 Flash Writer . . . . . . . . . . 78
6.5 Device Booting . . . . . . . . . 79
6.6 Debugging Device . . . . . . . 80

6.6.1 SoC Trace . . . . . . . . . 81
6.7 ADC . . . . . . . . . . . . . . 82

6.7.1 Configuration Register . . . 82
6.7.2 Operation Modes . . . . . 83
6.7.3 AD7682 Driver Imple-

mentation . . . . . . . . . 84
6.7.4 ADC Device Usage . . . . 85

6.8 Memory Layout . . . . . . . . . 86
6.9 Monitoring Output . . . . . . . 87

6.9.1 Ethernet Configuration . . 87
6.9.2 TCP Server . . . . . . . . 88

6.10 Inter-Core Communication . . . 89
6.11 Application . . . . . . . . . . . 90
6.12 Monitoring Utility . . . . . . . 90
6.13 Implementation Challenges . . 92

7 Testing and Higher SIL Lev-
el Discussion 93

7.1 Device Testing . . . . . . . . . 93
7.1.1 Software Testing . . . . . . 93
7.1.2 System Testing . . . . . . . 93
7.1.3 Type Testing . . . . . . . . 94

7.2 Higher SIL Level Discussion . . 94
8 Conclusion 95

References 96

A List of Abbreviation 101

x



Tables / Figures

2.1 Main Differences Between
Safety and Security . . . . . . . . . . . . . .5

2.2 Main Differences Between
Random and Systematic Fail-
ure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

2.3 Table Describes TFFR and
SIL Relation . . . . . . . . . . . . . . . . . . . . 10

2.4 Table Showing Techniques
and Measures for Different
SIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Software Architecture Mech-
anism for Different SIL . . . . . . . . 13

2.6 Coding Standards for Differ-
ent SIL. . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Comparison of Suitable Mi-
crocontrollers . . . . . . . . . . . . . . . . . . . 30

5.1 XMODEM Frame Fields De-
scription . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Interpretation of Failure Info
Memory Block . . . . . . . . . . . . . . . . . . 48

5.3 Safety Shutdown State De-
scription . . . . . . . . . . . . . . . . . . . . . . . . 53

1.1 Passenger Capacity of Differ-
ent Transport Modes . . . . . . . . . . . . .2

2.1 V-model Illustration . . . . . . . . . . . . .8
2.2 Failure Assertion Program-

ming Illustration . . . . . . . . . . . . . . . 15
2.3 Diverse Programming Illus-

tration . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Level Rail Track Crossings

Numbers by Countries . . . . . . . . . 22
2.5 Level Crossing Signalization

in Switzerland . . . . . . . . . . . . . . . . . . 23
2.6 Level Crossing Signalization

in Germany . . . . . . . . . . . . . . . . . . . . . 23
2.7 Level Crossing Signalization

in Norway . . . . . . . . . . . . . . . . . . . . . . 24
2.8 Level Crossing Signalization

in Czech Republic . . . . . . . . . . . . . . 24
3.1 System Design . . . . . . . . . . . . . . . . . . 26
4.1 ADC Evaluation Board Photo . 33
4.2 Hardware Design . . . . . . . . . . . . . . . 34
5.1 Software Architecture . . . . . . . . . . 35
5.2 Boot Pin Mutex . . . . . . . . . . . . . . . . 37
5.3 Software Flow Boot Overview . 38
5.4 Boot Image Format . . . . . . . . . . . . 40
5.5 System Initialization . . . . . . . . . . . 41
5.6 DMSC Initialization Config-

uration . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.7 Bootloader Flow. . . . . . . . . . . . . . . . 43
5.8 Flash Memory Map . . . . . . . . . . . . 44
5.9 UART XMODEM Frame . . . . . . 45

5.10 Example of XMODE Proto-
col Communication . . . . . . . . . . . . 46

5.11 Flash Writer Sequence Dia-
gram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.12 Failure Count Variable Dia-
gram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.13 Software Update Process Di-
agram . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.14 PMIC Connection Example . . . 51
5.15 Device Safety Shutdown Pro-

cess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.16 ESM Module Overview . . . . . . . . 52
5.17 Software Initialization Check

Process . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.18 Software Initialization Check

Process in the R5 Core . . . . . . . . 55

xi



5.19 Process in the SIL Component . 56
5.20 Software Flow non-SIL Par-

allel Version . . . . . . . . . . . . . . . . . . . . 58
5.21 Software Flow non-SIL Par-

allel Sequential . . . . . . . . . . . . . . . . . 59
5.22 Software Flow non-SIL Addi-

tional Measure Task . . . . . . . . . . . 60
5.23 Software Flow Non-SIL LED

Information Task . . . . . . . . . . . . . . . 61
5.24 Information LED Status Il-

lustration . . . . . . . . . . . . . . . . . . . . . . . 61
5.25 Software Flow Non-SIL Web

Server Task . . . . . . . . . . . . . . . . . . . . . 62
5.26 Mailbox System Example . . . . . . 63
5.27 Overview of Inter-Core Com-

munication Shared Memory . . . 64
5.28 Message Frame of Inter-Core

Communication . . . . . . . . . . . . . . . . 64
5.29 Data Frame of Inter-Core

Communication . . . . . . . . . . . . . . . . 65
5.30 GPIO Safety Connection

Schema . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.31 Project Module Architecture . . 72

6.1 Prototype Architecture
Overview . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 SysConfig Multi-core Config-
uration . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3 UART Bootmode Configura-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4 QSPI FLASH Bootmode
Configuration . . . . . . . . . . . . . . . . . . . 78

6.5 Software Flashwrite Imple-
mentation Diagram . . . . . . . . . . . . 79

6.6 Software Bootloader Imple-
mentation Diagram . . . . . . . . . . . . 80

6.7 XDS110 Built-in Debug
Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.8 SoC Trace Example . . . . . . . . . . . . 82
6.9 SPI Without a Busy Indicator . 83

6.10 SPI With a Busy Indicator . . . . 83
6.11 SPI Mode 0 Diagram . . . . . . . . . . 84
6.12 ADC SPI RAC Mode . . . . . . . . . . 84
6.13 SPI Timeline in Logic Ana-

lyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.14 PRU-ICSSG System Decom-

position Diagram . . . . . . . . . . . . . . . 88

xii



6.15 TCP Server Communication
Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.16 Cyclic Buffer Structure . . . . . . . . 90
6.17 Monitorign Example . . . . . . . . . . . 91

xiii





Chapter 1
Introduction

This chapter introduces the motivation for this thesis and outlines its objectives.

1.1 Motivation
Rail transport is one of the most energy-efficient and high-capacity modes of transporta-
tion, enabling the movement of large volumes of freight and passengers with relatively
low energy consumption. It forms a critical component of global infrastructure, with
approximately 8% of goods and passengers worldwide transported by rail [1].

Given these benefits, ensuring safety and minimizing risks are critical priorities. This
section justifies the importance of railway safety before exploring specific safety mech-
anisms.

1.1.1 High Impact

The low rolling resistance of steel wheels on rails, combined with efficient electric propul-
sion, makes rail transport ideal for transporting large volumes of passengers and freight.
As illustrated in Figure 1.1, rail systems offer superior passenger capacity relative to
time and space in urban environments.

Moreover, rail transport is highly energy-efficient, consuming approximately seven
times less energy per passenger than car travel in urban settings [2]. However, the large
scale of rail operations means that accidents can have severe consequences, underscoring
the need for robust safety measures.

1.1.2 Strategic Importance

Railways are vital for industrial supply chains, transporting critical materials such as
coal and chemical components due to their high capacity and ability to handle heavy
loads. They also play a key role in strategic logistics, enabling efficient transport of mil-
itary equipment and supplies in various global and regional contexts [3]. Moreover, rail
transport is essential for delivering humanitarian aid during natural disasters, provided
the infrastructure is designed to withstand environmental challenges such as floods,
earthquakes, or extreme weather.

Beyond these roles, railways are strategically critical for global and regional con-
nectivity. They facilitate trade by linking urban centers, ports, and industrial hubs,
as seen in initiatives like China’s Belt and Road, which enhances cross-border com-
merce [4]. Railways also support the energy transition by enabling low-carbon trans-
port and the movement of renewable energy components, aligning with sustainability
goals like the EU’s Green Deal [5]. Additionally, rail networks drive urban and regional
development by connecting cities and rural areas, fostering economic equity and mobil-
ity [6]. Finally, transcontinental rail corridors strengthen international trade resilience,
offering alternatives to maritime routes and mitigating geopolitical risks [7].

1



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Consequently, railway infrastructure must be engineered for reliability across diverse

conditions. Robust design and operational measures should address human error, envi-
ronmental risks, and capacity demands, with requirements varying by geography. For
example, northern railways must endure extreme cold and heavy snowfall, while south-
ern systems need resilience against high temperatures and coastal rainfall.

1.1.3 Personal Motivation

My primary interest is in embedded systems, focusing on direct hardware control, pe-
ripheral interaction, and low-level software development. Designing safe software for
fail-safe railway platforms aligns with these interests, as it requires ensuring reliability,
addressing physical constraints, and minimizing abstraction layers.

Figure 1.1. Passenger capacity of various transport modes, showing the number of passen-
gers per hour on 3.5 m wide lanes in urban environments [8].

1.2 The Aim of This Thesis

This thesis aims to design and implement a fail-safe system for railway applications,
specifically a component for a railroad crossing system that controls LED lights. The

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 The Aim of This Thesis

system must comply with CENELEC1 standards. Detailed system and functional re-
quirements are provided in Chapter 3.

To achieve this objective, the following steps are proposed:

. Analyze fail-safe software standards for railway systems. Identify the differences
between SIL2 and SIL4 platforms and examine specific mechanisms that ensure com-
pliance with safety requirements.. Choose suitable hardware and design a CENELEC-compliant SIL2+ architecture.
The design should include a boot sequence and mechanisms for detecting and miti-
gating random errors and software faults. The proposed device will consist of a safety
part responsible for critical computations and a non-safety part responsible for mon-
itoring and data transmission over Ethernet.. Implement the designed software prototype architecture on the selected hardware.. Justify the implementation for SIL2 and evaluate potential steps required to achieve
higher SIL levels.

1 European Committee for Electrotechnical Standardization

3



Chapter 2
Background Research

In this chapter, I studied the standards for design and implementation of software
for fail-safe platforms in railway infrastructure environments. I have tried to identify
the differences between the different safety integration levels and discuss the specific
mechanisms that lead to meeting the safety requirements given by the standards.

2.1 The Difference between Security and Safety
Before studying the issue, it is necessary to get the terminology right. In the English
language, there are two words: safety and security.

The term security refers to the discipline that aims to protect against harmful attacks
or actions such as vandalism, cyber-attack, or terrorism. Physical barriers, authentica-
tion, encryption, or monitoring systems are used to protect [9].

The term safety refers to the discipline aimed at preventing unintentional incidents,
such as accidents, errors, or technical failures, which may result in injury, loss of life, or
property damage. Typical threats include natural hazards, equipment malfunctions, or
human error. Safety measures encompass robust design standards, regular maintenance,
and human factor engineering to minimize risks [10].

The importance of safety in railway infrastructure and rolling stock cannot be over-
stated, as the potential consequences of technical failure or human error can be catas-
trophic. A stark reminder is the derailment of the ICE 884 near Eschede, Germany in
1998, which resulted in the deaths of 101 people and injuries to over 80. The accident
was caused by a fatigue crack in a wheel tire, which had not been properly detected
during maintenance inspections [11]. This tragic event exposed the vulnerabilities in
safety assurance processes and highlighted the necessity for rigorous inspection pro-
tocols, fail-safe design principles, and continuous monitoring. Since then, significant
advances have been made in railway safety, including the adoption of condition-based
maintenance, advanced track monitoring systems, and automated train control tech-
nologies [12]. These improvements illustrate how safety in railways depends not only
on robust engineering but also on a systemic approach integrating human factors, op-
erations, and organizational learning from past incidents.

To illustrate the critical role of safety in a more familiar context, the importance
of safety in railway systems can be compared to the automotive industry, which we
encounter more frequently. The emphasis on safety over security in car transportation
is driven by statistical evidence: road traffic accidents remain a leading cause of death
globally, with approximately 1.19 million fatalities annually [13]. In contrast, security-
related incidents, such as cyberattacks on vehicles, while emerging as a concern, are less
frequent and typically have less immediate impact on human lives. For example, a mal-
functioning braking system poses a direct and immediate risk to occupants, whereas
a security breach, such as unauthorized access to a vehicle’s infotainment system, may
compromise privacy but is less likely to cause physical harm. Therefore, prioritizing

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Materials and Standards

Aspect Safety Security

Focus accident prevention prevention of deliberate attacks
and technical failures

Threats technical faults, random failures, human intentional actions,
technical failures malicious actions

Methods system reliability, security, encryption,
standards monitoring

Example fail-safe systems, physical security,
of measures resilience testing cybersecurity systems

Table 2.1. Main differences between the terms safety and security

safety through robust engineering, driver training, and regulatory frameworks is critical
to enhancing the reliability and trustworthiness of car transportation systems.

Table 2.1 compares the different aspects of safety and security in order to highlight
the different meanings. In this thesis, I will deal primarily with the second term - safety.

2.2 Materials and Standards
The safety requirements for transport infrastructure in the European Union are defined
in standards issued by CENELEC.1 These standards are EN 50126, EN 50128, EN
50129, and EN 50159.

The standard EN 50126 relates to railway equipment in general and specifies and
defines how to demonstrate reliability, availability, maintainability, and safety (RAMS).
For more information see chapter 2.3.

The norm EN 50129 describes the standard for the railway communication and sig-
naling system and the data processing system (software). The annexes provide detailed
instructions on how to test hardware components including microcontroller components.
The standard EN 50159 complements the standard for safety communications.

The norm EN 50128 defines a standard on how to properly develop safety software
for railway infrastructure.

2.2.1 New Standard EN 50716

In November 2023, CENELEC issued the new standard EN 50716:2023, titled Railway
Applications - Requirements for software development, which replaces EN 50128:2011
and EN 50657:2017 [14]. This new standard unifies software development requirements
for both signaling systems and vehicles, eliminating the need to separate specifications.
It now applies to software with basic integrity (formerly SIL0), removing the restriction
that excluded non-safety-related software. Key changes include:

. Scope and Normative References: The standard no longer lists normative references,
and the requirement for separate safety and non-safety specifications is clarified, with
all system requirements now covered under a single System Requirements Specifica-
tion.

1 European Committee for Electrotechnical Standardization

5



2. Background Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. Terms and Definitions: Terms are aligned with ISO2 and IEC3 standards, and the

Integrator role abbreviation is removed.. Software Integrity: A quality assurance process is now mandatory for non-safety-
related software, with basic integrity requirements introduced. No assessor is required
for basic integrity systems (SIL 0).. Organization and Management: Organizational independence is emphasized, ad-
dressing pressures from peers, supervisors, or profit-driven motives that could com-
promise safety. The integrator role is removed from the organizational structure.. Software Assurance: Validators can now perform additional audits, and documen-
tation requirements for basic integrity are relaxed (e.g., software architecture and
design specifications are now recommended rather than highly recommended).. Software Development: The integrator role is replaced by a tester, and programming
language criteria are updated to focus on features like modular programming and
strict typing, enabling the use of modern languages like Rust.. Application Data and Maintenance: Chapters 8 and 9, covering application data/al-
gorithms and software deployment/maintenance, are critical for system configuration
and safety, but require separate detailed analysis due to their complexity.

This thesis primarily builds on the EN 50128:2011 standard, as the core work was
completed prior to the application of EN 50716:2023 to the working process.

2.3 RAMS

The acronym RAMS is composed of the initial letters of the words Reliability (com-
ponents do not fail too often), Availability (to be sure that components will work as
required and that if they fail, they will not affect the functionality of the equipment),
Maintainability (and easy replaceability in the event of damage), and Safety (described
in the Chapter 2.1).

No approach can achieve 100% success in any RAMS aspect; it can only be approx-
imated. The desired level of achievement must be clearly defined.

It is necessary to remember the economic side of the issue. The ratio of the investment
in making the platform safer and how much it will cost to develop and produce is
growing exponentially, in general. Thus, going from 20% to 60% safety will be much
less economically challenging than going from 99.99% to 99.999999%. If we develop this
theory into implications, we necessarily arrive at the question - how expensive is human
life? Theoretically, this cost could be quantified according to standards, state-specific
requirements, and crash statistics.

If we go back to all four aspects, we find that some of the essences are contradicting.
For example, we’re going to make the equipment safer and more robust; it’s going to
reduce availability and reliability.

I also find it important to answer the question - why is it necessary to pay attention
to system availability or repairability? After all, it is only the safety itself that is
important to us. If we think about it, as a result, all the aspects already mentioned
are important because they complement each other. You cannot achieve safety without
having a low failure rate system, or you cannot achieve safety with a possible system
failure without affecting the requirement that the component is supposed to fulfill.

2 International Organization for Standardization
3 International Standards

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Systematic and Random Failures

2.4 Systematic and Random Failures

Random failures can be described by statistical distributions [15]. We cannot control
failures; we can only predict and model them mathematically. In most cases, the failure
is due to a physical cause such as material fatigue, wear, corrosion, or random failures
of electronic components.

The EN 50126 standard defines systematic failures as failures caused by errors in
system life cycle activities that lead to deterministic failure of a product, system, or
process under certain combinations of inputs or conditions [15]. Unlike random failures,
systematic failures are usually caused by human errors at various stages of the system
life cycle, namely incorrect specification, system design, development, manufacture, or
operation and maintenance. These failures, on the other hand, are preventable from
accidental failures by process, testing, and validation phases.

By the norm EN 50129, these errors are, for example: specification errors, design
errors, manufacturing errors, installation errors, operation errors, maintenance errors,
or modification errors.

Aspect Random Failure Systematic Failure

Cause physical processes human error during design,
(fatigue, wear, environment) implementation or maintenance

Characteristic stochastic, unpredictable deterministic, predictable
at the individual level under certain conditions

Solution predictive maintenance, validation, verification,
statistical analysis, redundancy process measures

Repetition not repeatable under repeated every time
the same conditions under the same conditions

Examples rail breakage, software error,
bearing failure sensor miscalibration

Table 2.2. Main differences between random and systematic failures.

2.4.1 RAMS Development Cycle

The RAMS development cycle is described by the V-model, which uses top-down and
bottom-up approaches [16]. It is a graphical representation of the complete development
lifecycle [17]. The advantages of this model are clear structure, easy traceability between
the design, respective requirements, and testing results.

The model also has many disadvantages such as the lack of flexibility; the later
a bug is discovered, the more expensive it is to fix [18]. However, in the context of rail
transport, these weaknesses are a necessity to ensure safety.

EN 50128 describes in more detail the different phases and roles that are responsible
for each phase. The V-model is specific to two activities - validation and verification.

7



2. Background Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.1. V-model illustration by EN 50128 norm definition [19].

2.4.1.1 Verification and Validation

The standard defines verification as the confirmation, through provided objective ev-
idence, that defined requirements have been met, and validation as the confirmation,
through provided objective evidence, that requirements for a specific purpose or appli-
cation have been met [15].

Simply, verification answers the question are we building things correctly, validation
answers the question are we building the right thing?

2.4.1.2 System Description

Defining system requirements is the first and very important step for a successful and
safe system or component. In this phase, it is important to define the limits, interfaces,
functions, and the environment of the system.

It is important to note that SIL levels,4 which we will discuss later, are always related
to a component - e.g. a function. So we cannot say that the whole platform is a SIL,
but only that the platform provides a function that has that SIL.

To illustrate, let’s take a specific example: automatic train control, specifically emer-
gency braking in case of a dangerous situation, e.g. when a train runs a red light. In
this case the function is: automatic braking when passing a dangerous signal. The
driver’s cab, the track equipment and the signal transmission path are the system.
The Interfaces for us are the wheels, the dashboard which serves as an API for the
driver to communicate with the system, and the warning light which signals the entry
prohibition.

2.4.1.3 Risk Analysis

In the context of safety-critical systems, we define the hazards relevant to this study.
The hazard standard defines a hazard as any condition that could precipitate an acci-
dent [15].
4 Safety integrity level

8



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Systematic and Random Failures

In the context of a railway monitoring system, a hazard can be exemplified by the
failure to initiate emergency braking or the inability to receive a stop command. In
safety-critical systems, the presence of a hazard inherently introduces risk. According
to relevant standards, risk is defined as the combination of the anticipated frequency
of a hazard’s occurrence and the severity of its potential consequences.

To make a system safe, our goal is to minimize risk to the point that it is equal to
or less than the acceptable risk. We achieve this by adding just safe features to our
system such as the redundancy principle, the watchdog principle, or the error detection
principle.

Risk analysis consists of some of the methods already mentioned: hazard identifica-
tion, frequency minimization, and consequence classification.

2.4.1.4 Acceptable Risk

The European Union specifies in the CSM regulation 5 which methods can be used to
calculate acceptable risk.

. Application of codes of practice: The use of established norms, standards, and best
practice methodologies for risk assessment and management that have been validated
in practice.. Comparison with similar system: Risk assessment based on analysis and compari-
son with other systems that have similar functionality, architecture, or operating
conditions. This approach is particularly useful when assessing a new context.. Explicit risk estimation: Direct and detailed quantitative or qualitative risk assess-
ment using specific methods. This approach requires data collection and detailed
modeling [20].

2.4.1.5 Hazard Analysis (FTA, FMEA)

The standard EN 50126 recommends the use of top-down analysis for hazard analysis.
Specifically, Fault Tree Analysis (FTA) which allows us to work with dependencies between
individual hazards. The second method used is Failure Modes and Effects Analysis
(FMEA). The FTA is suitable for analyzing multiple system failures; FMEA is suitable
for analyzing a single failure, including all its consequences.

2.4.1.6 Tolerated Risk Ratios (THR, TFFR)

Tolerable Hazard Rate (THR), which represents the maximum frequency of occurrence of
a particular hazard. It therefore determines how many times a potentially hazardous
event can occur in a defined period without affecting the overall safety of the system [19].

Tolerable Functional Failure Rate (TFFR), which represents the maximum frequency
of failure of a specific system function, focuses on the system’s functional aspects and
considers how often a function can fail without leading to unacceptable risk [19].

THR will be sufficient if our system consists of only one safe function. However, if
there is more than one, we need to use TFFR to combine them.

2.4.1.7 Safety Integrity Level (SIL)

The term SIL is a method used to evaluate and classify the level of integrity of the safety
functions of a system. Previous methods have described to us how to deal primarily
with random error. SIL tells us what type of architecture, validation, testing, etc. to
choose depending on the level of system error.

5 Common Safety Method for Risk Evaluation and Assessment

9



2. Background Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TFFR [ℎ−1] SIL level

10−9 ≤ 𝑇 𝐹𝐹𝑅 < 10−8 4

10−8 ≤ 𝑇 𝐹𝐹𝑅 < 10−7 3

10−7 ≤ 𝑇 𝐹𝐹𝑅 < 10−6 2

10−6 ≤ 𝑇 𝐹𝐹𝑅 < 10−5 1

10−5 ≤ 𝑇 𝐹𝐹𝑅 basic integrity

Table 2.3. Relationship between TFFR and required Safety Integrity Level (SIL) [16].

The norm describes 4 Safety Integrity Levels from 1 to 4 and Basic Integrity. The SIL
4 is the highest level and the Basic Integrity is the lowest, as described in the table 2.3.6

2.4.2 The Five Base Questions
I would like to mention that an excellent mechanism to verify that we haven’t forgotten
anything elementary is to answer these five basic questions that are based on EN 50126.

. What - What features must be implemented?. How - What steps must be followed during implementation?. With what - What tools must be used for implementation?7. Assurance - How can I ensure that the first three questions are answered correctly?. Traceability - Have I recorded everything in a way that allows for audit and verifica-
tion?

2.5 Mechanisms to Achieve SIL Level
I would like to discuss the mechanisms, architecture types, principles, and policies that
ensure that a given platform contains SIL functionality. The thesis does not address
the processes behind the development of safety software, which are an integral part of
the overall development process.

In this chapter we will use terms defined by EN 50128 and EN 50129, which are
widely used in their annexes and can be found in this thesis in tables or figures. In
order to understand them, let’s clarify them.

. ‘M‘ - Mandatory: This symbol means that the use of a technique is mandatory [19].. ‘HR‘ - Highly Recommended: This technique or measure is highly recommended for
the SIL. It is considered a key measure, and implementation is mandatory. In case
of absence, clear reasoning is required.. ‘R‘ - Recommended: This technique or measure is recommended but not required
or necessary to meet the safety requirement for a given SIL. Implementation of this
technique can improve safety and reliability.. ‘-‘ No Recommendation: There is no recommendation or non-recommendation for
this technique or measure. Use is discretionary and should be decided based on the
requirement specification.

6 The norm EN 50129 from year 2003 introduced term SIL 0 to indicate non-safety-related functions.
This terms in no longer used in the new norms version.
7 The tool problematic is detailed discussed int the Chapter 2.5.4.

10



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Mechanisms to Achieve SIL Level

. ‘NR‘ - Not Recommended: This technique or measure is not recommended for a given
SIL. Implementation may be ineffective, inadequate, or even counterproductive.

2.5.1 The Principles in Developing High-integrity Software

The EN 50128 standard defines ten basic principles, the application of which in the
development of high integrity software is not mandatory. Let’s highlight the six most
important ones.

. Top-down design method: This method divides the system into smaller parts and
gradually works its way from generalities to specific issues.. Modularity: The modularity aims to divide software into smaller independent blocks
that can be maintained and tested independently. This division often makes it pos-
sible to work on as many components in parallel as possible at the same time. In
addition, it allows for easier testing or making changes. The disadvantage can be
a certain necessary level of abstraction, which in the case of embedded systems can
be undesirable.. Verification of each phase of the development life-cycle: This method aims to mini-
mize the risk of errors during development by thoroughly verifying each stage. This
leads to the early identification of problems and therefore saves time and money.. Verified components and component libraries: The goal is to reduce the risk of bugs
in systems by reusing verified components. In addition to preventing errors, this
measure also saves money. Since the validation process of developing new software
is very demanding, it is therefore preferable to use components that are already
validated.. Clear documentation and traceability: The aim is to provide a clearly interpretable,
understandable, and quickly comprehensible description of the component.. Auditable documents: The aim is to provide evidence that the system is developed
and tested in accordance with the requirements.

2.5.2 Architecture

In designing SIL software, the standard defines 7 basic principles. However, in rele-
vance to the use of a microprocessor, they can be generalized to 3 basic principles or
approaches to ensure that the code is safe and meets all requirements.8 Each of these
approaches has its advantages and limitations depending on the SIL level required.

. Inherent fail-safety: This approach ensures the safety of the system due to the in-
trinsic properties of the design. Functions are designed to be fault-tolerant without
the need for external intervention. It is therefore more a matter of hardware design.
This method cannot be implemented in software. As an example, the signal remains
in a safe state even after a power failure, without external intervention. This mech-
anism is recommended (R) for SIL 1 and SIL 2, and highly recommended (HR) for
SIL 3 and SIL 4.. Reactive fail-safety: The approach focuses on responding to faults typically through
fault detection and subsequent activation of protection mechanisms. The system
is therefore able to react on its own without external intervention to ensure a safe
state. Examples include the activation of emergency braking or safety shutdown
when a failure of the main system is detected. The mechanism is recommended (R)
for SIL 1 and SIL 2 and highly recommended (HR) for SIL 3 and SIL 4.

8 The sub-parts of these mechanisms are described in EN 50129, Annex A, Table E.4.

11



2. Background Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. Composite fail-safety: The approach combines multiple channels with fail-safe

mechanisms for peer-to-peer comparison. This provides greater resilience to failure
through redundancy and independence. An example would be the need to ob-
tain a positive signal from at least two of the three independent units to activate
an action element. This mechanism, like the inherent and reactive mechanisms, is
recommended (R) for SIL 1 and SIL 2 and highly recommended (HR) for SIL 3 and
SIL 4.

The standard also defines other architectural approaches that are less suitable for
higher levels of safety integrity (SIL 3 and SIL 4). These approaches can only be used
in less critical applications such as SIL 1 and SIL 2. These include, for example, a dupli-
cated electronic structure, but where the channels may not be completely independent
and the comparison of results may not be fail-safe. Another test is, for example, a sim-
ple electronic structure with self-tests, thus supervising its own functions. However,
this approach again lacks independence between the function and its supervision. This
limits this method, like the previous one, for higher SIL levels.

Technique/Measure SIL 1 SIL 2 SIL 3 SIL 4

Separation of safety-related functions from
non-safety-related functions to prevent R R R R
unintended influences

single electronic structure with self-tests R R NR NR
and supervision

single electronic structure based on R R HR HR
inherent fail-safety

single electronic structure based on reactive R R HR HR
fail-safety

Dual electronic structure R R NR NR

Dual electronic structure based on
composite fail-safety with fail-safe R R HR HR
comparison

Diverse electronic structure with fail-safe R R HR HR
comparison

Table 2.4. Table showing techniques and measures for different SIL levels according to EN
50129, Annex A, Table E.4 [16].

Table 2.4 clearly shows the different mechanisms depending on the SIL level as defined
by the standard. It is also not a bad idea to combine different mechanisms together.
By definition, however, this cannot be implemented for all techniques.

12



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Mechanisms to Achieve SIL Level

Technique/Measure SIL 1 SIL 2 SIL 3 SIL 4

Defensive Programming HR HR HR HR

Fault Detection & Diagnosis R R HR HR

Error Detecting Codes R R HR HR

Failure Assertion Programming R R HR HR

Safety Bag Techniques R R R R

Diverse Programming R R HR HR

Recovery Block R R R R

Backward Recovery NR NR NR NR

Forward Recovery NR NR NR NR

Retry Fault Recovery Mechanisms R R R R

Software Error Effect Analysis R R HR HR

Graceful Degradation R R HR HR

Information Hiding - - - -

Information Encapsulation HR HR HR HR

Fully Defined Interface HR HR M M

Formal Methods R R HR HR

Modeling R R HR HR

Structured Methodology HR HR HR HR

Modeling supported by CAD and specification tools R R HR HR

Table 2.5. Software Architecture mechanism for different SIL levels according to EN 50128,
Annex A Table A.3 [19].

2.5.3 Software Architecture Technique

EN 50128 in Annex A defines specific mechanisms to be used in the design of the
software architecture and its implementation for different SIL levels. We have listed
some of them in Table 2.5.

13



2. Background Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.3.1 Defensive Programming

The Defensive Programming is one of the most important techniques in safety pro-
gramming. The aim is to produce programs that detect anomalous control flow, data
flow, or data values during their execution and react to these in a predetermined and
acceptable manner [19].

There are three basic techniques of defensive programming:. All data9 is important until proven otherwise.. All input data is potentially hazardous until proven otherwise.. All code is dangerous until proven otherwise.

There exist many techniques of defensive programming. For example, to ensure
that the numbers manipulated by the program are reasonable, the norm EN 50128
recommends that:. Variables should be range-checked.. Where possible, values should be checked for plausibility.10. Parameters to procedures should be type, dimension, and range checked at procedure

entry.

Safe software should be designed to expect failures in its own environment. The norm
EN 5018 also defines three techniques:. Input variables and intermediate variables with physical significance should be

checked for plausibility.. The effect of output variables should be checked, preferably by direct observation of
associated system state changes.. The software should check its configuration. This could include both the existence
and accessibility of expected hardware and also that the software itself is complete.
This is particularly important for maintaining integrity after maintenance procedures.

There are more techniques like reusing quality code, handling I/O, testing, low tol-
erance, canonization, or control flow sequence checking, but the CENELEC norms do
not explicitly mention them [19, 22–23].

2.5.3.2 Fault Detection and Diagnosis

The goal of Fault Detection and Diagnosis is to detect faults in a system, which might
lead to a failure, thus providing the basis for countermeasures in order to minimize the
consequences of failure [19].

Fault detection is based on the principles of redundancy and diversity. The redun-
dancy can detect hardware faults, and diversity can detect software faults. For correct
results interpretation, it is necessary to use a voting system.

Special applicable methods for software level are assertion programming, N-version
programming,11 or safety bag technique. For hardware level control loops, error check-
ing codes, etc.

2.5.3.3 Error Detecting and Correcting Codes

The techniques Error Detecting and Correcting Codes aim to detect and correct errors
in sensitive information [19].
9 By data we mean all values stored in memory such as variables, objects, arrays, etc.

10 Plausibility means quality of seeming likely to be true, or possible to believe [21]
11 The N-version programming, also known as a multiple-version dissimilar software, is the method where
multiple functionally equivalent programs are independently generated from the same initial specifica-
tions [24].

14



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Mechanisms to Achieve SIL Level

To safety 𝑛 bits information is necessary to generate 𝑘 bits of block code. The
block code can be generated by different methods, like: Hamming codes, cyclic codes,
polynomial codes, hash codes, or cryptographic codes.

2.5.3.4 Failure Assertion Programming

The goal of Failure Assertion Programming is to detect residual faults during the exe-
cution of a software program [19].

Figure 2.2. The diagram illustrates the failure assertion programming mechanism.

The assertion programming method in safety software development follows the idea
of checking a pre-condition12 and a post-condition13 as illustrated in Figure 2.2. If
either the pre-condition or the post-condition is not met, the processing terminates
with an error.

2.5.3.5 Safety Bag Techniques

The Safety Bag technique is aimed at protecting against residual specification and
implementation faults in software that adversely affect safety [19].

Practically, it is an external monitoring system implemented on an independent com-
puter with a separate specification. Its primary role is to ensure that the main computer
performs safe actions, though not necessarily correct ones. The safety bag continuously
monitors the main computer and prevents the system from entering an unsafe state.
Additionally, if it detects that the main computer is approaching a potentially haz-
ardous state, it must restore the system to a safe condition, either on its own or in
coordination with the main computer.

2.5.3.6 Diverse Programming

The goal of Diverse Programming technique is to detect and mask residual software
design faults during the execution of a program, in order to prevent safety-critical
failures of the system, and to continue operation for high reliability [19].

Figure 2.3. The diagram illustrates the diverse programming mechanism.

The technique is based on relying on multiple implementations of the same specifica-
tion. Consequently, we expect that if the inputs are the same for all implementations,

12 The initial conditions are checked for validity before a sequence of statements is executed.
13 Results are checked after t he execution of a sequence of statements.

15



2. Background Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
the outputs will be the same as well. If this is not the case, we need to have a voting
strategy that tells us whether we accept a given outcome and possibly which one [25].

This technique does not eliminate residual software design faults but provides a mech-
anism to detect and mitigate them before they impact safety.

Studies and experiments14 indicate that N-version programming does not always
achieve the expected effectiveness. Despite using different algorithms, diverse software
versions frequently fail on the same inputs.

2.5.3.7 Recovery Block

The Recovery Block is the technique to increase the likelihood of the program perform-
ing its intended function [19].

This technique may appear similar to Diverse Programming (N-version program-
ming), but there are key differences between them. In the N-version programming
technique, N independent groups or individual developers, who do not share the pro-
gramming process, each develop a separate version of a software module. The under-
lying idea is that different developers will make different mistakes, thereby covering all
possible faults. In the Recovery Block technique, different algorithms are assigned to
distinct try blocks, which serve as redundant components. Unlike N-version program-
ming, the redundant copies do not execute simultaneously. Instead, the result of each
try block is evaluated using an acceptance test to determine its validity [26].

2.5.3.8 Retry Fault Recovery Mechanism

The goal of the Retry Fault Recovery Mechanism is to attempt functional recovery from
a detected fault condition by re-try mechanism [19].

If an error is detected in a condition or procedure, re-execution of the same code can
be started. In case of failure of a major part, a re-boot or re-start can be performed.
In the case of using tasks and re-scheduling or re-starting the task.

2.5.3.9 Software Error Effect Analysis

The goal of the SEEA (Software Error Effect Analysis) is to identify software compo-
nents and their criticality to propose means for detecting software errors and enhancing
software robustness, and to evaluate the amount of validation needed on the various
software components [19].

The norm EN 50128 describes three phases of the SEEA, that is a powerful bug-
finding method if it is carried out by an independent team:. Vital software components identification - This phase aims to determine the depth

of the analysis needed for each software component, from its specification.. Software error analysis - The second phase aims to provide the following information:. component name,. error considered,. consequences of the error at the module level,. consequences at the system level,. violated safety criterion,. error criticality,. proposed error detection means,. violated criterion if the detection means is implemented,. and residual criticality if the detection means is implemented.. Synthesis - The third phase aims to highlight the remaining unsafe scenarios and
determine the validation effort required based on the criticality of each module.

14 Source is the norm EN 50128, Annex D, Chap D.16.

16



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Mechanisms to Achieve SIL Level

2.5.3.10 Graceful Degradation
The technique Graceful Degradation aims to maintain the more critical system functions
available despite failures by dropping the less critical functions [19].

The graceful degradation refers to the ability of a system to maintain a partial level
of functionality when some components fail or are otherwise damaged. Instead of
failing completely, a system designed with graceful degradation can reduce its quality
of service while still providing essential functionality. This contrasts with fail-stop
behavior, where the system completely ceases to function upon failure. The goal of
graceful degradation is to ensure that users benefit from a reduced but functional level
of service, thus minimizing the impact of failure. A system that is designed in this way
is sometimes called fail-soft or fail-safe [27–28].

2.5.3.11 Information Encapsulation
The goal of the Information Encapsulation technique is to increase the robustness and
maintainability of software [19].

Globally accessible data can be unintentionally or incorrectly modified by any soft-
ware component, potentially requiring thorough code reviews and extensive changes.
To mitigate these issues, information hiding is a widely used approach. It involves re-
stricting direct access to key data structures, allowing them to be modified only through
a predefined set of access procedures. This ensures that internal changes—such as alter-
ing data structures or adding new procedures—do not impact the overall functionality
of the software. For instance, a directory system might include access procedures like
𝐼𝑛𝑠𝑒𝑟𝑡, 𝐷𝑒𝑙𝑒𝑡𝑒, and 𝐹𝑖𝑛𝑑. These procedures, along with the underlying data struc-
tures, could be re-implemented (e.g., by adopting a different lookup method or storing
data on a hard disk) without changing the logical behavior of the software that relies
on them.

2.5.3.12 Fully Defined Interface
The technique Fully Defined Interface leads to modularization. A Modular Approach
contains several rules for coding, maintenance phases, and design of the software project.
The norm EN 50128 defines a list of these rules to reach the modular methods for
interfaces.. A component or module shall have a single well-defined task or function to fulfill.. Connections between components or modules shall be limited and strictly defined;

coherence in one component or module shall be strong.. Collections of subprograms shall be built providing several levels of components or
modules.. Subprograms shall have a single entry and a single exit only.. Components or modules shall communicate with other components or modules via
their interfaces. Where global or common variables are used, they shall be well
structured, access shall be controlled, and their use shall be justified in each instance.. All components or module’s interfaces shall be fully documented.. Any component or module’s interface shall contain the minimum number of param-
eters necessary for the component or module’s function.. A suitable restriction of parameter number shall be specified.15

2.5.3.13 Formal Methods
The Formal Methods refer to mathematically rigorous techniques and tools for the spec-
ification, design, and verification of software and hardware systems. The application
15 The norms EN 50128 defines that suitable number is typically 5.

17



2. Background Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
of formal methods in software and hardware design is driven by the idea that, simi-
lar to other engineering fields, conducting rigorous mathematical analysis enhances the
reliability and robustness of a design [19, 29].

There is no universal formal method that is suitable for all scenarios. Rather, an ap-
propriate mathematical model must be chosen for each situation. Therefore, we have
several models. The standard EN 50128 describes CSP, CCS, HOL, LOTOS, OBJ,
Temporal Logic, VDM, Z Method, B Method, and Model Checking. Let’s at least take
a closer look at the most important ones.

The Communicating Sequential Processes (CSP) is a technique for the specification
of concurrent software systems. CSP defines a language for specifying process systems
and verifying their implementations via traces. A system is modeled as independent
processes composed sequentially or in parallel. Processes communicate through chan-
nels, synchronizing only when both are ready, with optional event timing modeling. As
an example of a suitable application, this method is systems of communicating processes
operating concurrently.

The Calculus of Communicating Systems (CCS) is a means for describing and reasoning
about the behavior of systems of concurrent, communicating processes. Like CSP,
CCS is a mathematical calculus for modeling system behavior as independent processes
running sequentially or in parallel. Processes communicate via ports, synchronizing
only when both are ready. Non-determinism is supported, and systems can be refined
top-down from traces or built bottom-up using composition rules.

The Higher Order Logic (HOL) is a formal language intended as a basis for hardware
specification and verification. It was developed at the University of Cambridge Com-
puter Laboratory. The notation is largely derived from Church’s Simple Theory of
Types, while the support system is based on the LCF (Logic of Computable Functions)
framework.

The Language for Temporal Ordering Specification (LOTOS) is a means for describing
and reasoning about the behavior of systems of concurrent, communicating processes.

The OBJ is an algebraic specification language. Users specify requirements in terms
of algebraic equations. The goal of this technique is to provide a precise system speci-
fication with user feedback and system validation prior to implementation.

The Temporal logic aims to direct the expression of safety and operational require-
ments and formal demonstration that these properties are preserved in the subsequent
development steps. Standard First-Order Predicate Logic does not account for time.
Temporal logic extends it by introducing modal operators like henceforth (for ongoing
conditions) and eventually (for future conditions). These help define system behav-
iors—e.g., safety properties must always hold, while certain states must be reached
eventually. Temporal formulas describe sequences of system states, which can repre-
sent the entire system, a component, or a program. However, temporal logic does not
handle precise time intervals directly; instead, additional time states must be defined
within the system.

The Vienna Development Method (VDM), Z notation, and B method are all formal
methods used for specifying and verifying software systems, but they differ in their
approaches and areas of application.

VDM is a mathematically based, model-driven specification technique developed at
the IBM Laboratory Vienna in the 1970s [30]. It enables high-level abstraction in
system modeling, facilitating early detection of design flaws and key system features.
By providing a structured refinement process, validated models can be systematically
transformed into detailed implementations while ensuring correctness through proof

18



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Mechanisms to Achieve SIL Level

obligations. With its formal semantics, VDM allows for rigorous verification of model
properties, offering a high level of assurance. Additionally, an executable subset sup-
ports testing and validation, making it accessible even to non-experts through graphical
user interfaces.16

The Z method, like VDM, employs a model-based approach with set-theoretic struc-
tures to define system states and their transitions. However, Z focuses on structuring
specifications through schemas, making it well-suited for data-oriented, sequential sys-
tems. Unlike VDM, Z is more of a notation rather than a complete development method,
relying on additional methodologies to transition from specification to implementation.

The B method extends the principles of Z by incorporating rigorous proof obliga-
tions and refinement steps that ensure the correctness of both system models and their
implementations. It provides a structured approach to software development through
abstract machines and step-by-step refinements, leading to deterministic implementa-
tions. Unlike VDM and Z, B emphasizes automatic proof generation and verification,
making it particularly useful for safety-critical applications.

While all three methods share a foundation in formal logic and model-based speci-
fication, their primary distinctions lie in their scope and intended use cases. VDM is
best suited for early-stage design validation and refinement into sequential programs.
Z excels in formalizing complex data structures and relationships, whereas B extends
these capabilities with rigorous proof obligations and structured refinements, ensuring
the correctness of both design and implementation.

The last formal method mentioned in the norm EN 50128 is the Model Checking.
It aims to, given a model of a system, test automatically whether this model meets
a given specification [19]. Model checking verifies whether a given structure satisfies
a specified logical formula. It applies across various logic and structures, with a com-
mon example being the evaluation of propositional logic formulas. Primarily used in
hardware design, model checking algorithmically ensures that a system model meets
a formal specification, often expressed in temporal logic. For software, full automation
is limited due to undecidability. The system is typically represented as a finite-state
machine, where nodes correspond to system states, edges define transitions, and atomic
propositions describe key properties. When the model is finite, verification reduces to
a graph search.

2.5.3.14 Data Modeling

The technique Data modelling is the process of creating a data model by applying
formal data model descriptions using data modelling techniques.

In software engineering, a data model is an abstract representation of how data
is structured, stored, and accessed within a system. It defines data objects, their
relationships, and the rules governing their interactions within a specific domain. Data
modeling is essential for designing databases, ensuring data consistency, and facilitating
seamless data exchange across systems.

2.5.3.15 Structured Methodology

The approach Structured Methodology aims to improve software quality by emphasizing
the early stages of the development life cycle. This method is related to the V-model
and one of its goals is to.

Structured methodologies provide systematic procedures and notations to define re-
quirements and implementation features in a logical and structured manner. These
16 Recommending for simple human understanding description on Wikipedia for detail understanding of
this method: https://en.wikipedia.org/wiki/Vienna_Development_Method.

19

https://en.wikipedia.org/wiki/Vienna_Development_Method


2. Background Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
methodologies break down complex problems into manageable stages, ensuring a clear
understanding of the system and its environment. They facilitate the decomposition
of data and functions, use checklists for completeness, and maintain a balance between
precision and intuitive understanding.

Different structured methods are suited for various domains: traditional data-
processing methodologies such as SSADM17 and LBMS18 focus on transaction-based
systems, whereas process-control and real-time applications benefit from methods
like MASCOT,19 JSD,20 and real-time Yourdon. Many structured methodologies
incorporate graphical or semi-formal notations, improving visibility and reducing the
likelihood of misinterpretation. Some, like JSD and SDL, partially integrate mathe-
matical formalism, enhancing their reliability and enabling automated processing.

By providing a clear, logical framework, structured methodologies help developers
systematically analyze, specify, and verify system designs, making them particularly
valuable in complex or safety-critical applications.

2.5.4 Tools Classification

The norm EN 5012821 defines three basic categories of tools used for safety software
development.

. T1: This class includes tools that do not produce any output that could directly or
indirectly contribute to the resulting executable software code. An example of a tool
is a text editor that has no ability to generate code.. T2: This class includes tools that support testing or verification of the design or
executable code. Errors in a tool may occur in certain situations, but cannot directly
cause errors in the resulting executable software. Examples of such tools include
static analysis tools or tools for measuring test coverage.. T3: This class includes tools that generate outputs that directly or indirectly con-
tribute to the final executable code of the resulting system. These include, for ex-
ample, compilers.

It is important to note that depending on the class of a given tool, requirements
are made on them, which are checked during validation and verification. Therefore, it
is important to keep them in mind when designing a system. Often it may be more
appropriate for a project to use an older but validated tool for which its behavior has
already been proven and de-validated.

17 Structured systems analysis and design method (SSADM) - waterfall method for the analysis and design
of information systems.
18 Location-based method (LBMS) - A scheduling approach that optimizes construction workflow by track-
ing work crews’ movement across locations, ensuring continuity and efficient resource allocation. It ex-
tends traditional project management by structuring work packages into interconnected entities, improving
scheduling flexibility and project efficiency [31].
19 Modular Approach to Software Construction Operation and Test (MASCOT) is a methodology for designing,
constructing, and testing software with a strong emphasis on modularity, concurrency, and data flow
representation. It ensures component decoupling, facilitating reusability and simplifying testing, making
it particularly suitable for complex real-time embedded systems [32].

The interesting fact is that the UK Ministry of Defense has been the primary user of the MASCOT
method through its application in significant military systems, and at one stage mandated its use for new
operational systems. Examples include the Rapier missile system, and various Royal Navy Command &
Control Systems.
20 Jackson System Development (JSD) is a linear software development methodology developed by Michael
A. Jackson and John Cameron in the 1980s [33].
21 Specifically, clauses 3.1.42-44 in the aforementioned EN 50128.

20



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Mechanisms to Achieve SIL Level

Technique/Measure SIL 1 SIL 2 SIL 3 SIL 4

Coding Standard HR HR M M

Coding Style Guide HR HR HR HR

No Dynamic Objects R R HR HR

No Dynamic Variables R R HR HR

Limited Use of Pointers R R R R

Limited Use of Recursion R R HR HR

No Unconditional Jumps HR HR HR HR

Limited Size and Complexity HR HR HR HR
of Functions, Subroutines, and Methods

Entry/Exit Point strategy for Functions HR HR HR HR
Subroutines, and Methods

Limited Number of subroutine parameters R R R R

Limited Use of Global Variables HR HR M M

Table 2.6. Coding standards for different SIL levels according to EN 50128, Annex A,
Table A.12 [19].

2.5.5 Programming Technique

The standards also define the programming standards for the individual SIL levels. The
individual techniques are shown in table 2.6.

Compared to other types of software, the development of the safe one differs mainly
in techniques such not recommending the use of dynamic memory allocation, both for
objects and variables. This is due to the greater possibility of failure, as the software
allocates memory at runtime, and this can lead to failures. The standard recommends
limited use of recursion and pointers. These are methods that can potentially mishandle
memory - either filling it up quickly or being ill-defined. Therefore, unless necessary, it
is not recommended to use them.

Specific techniques for safe development are also limited size and complexity of func-
tions, subroutines, and methods and input or output strategies for functions, subrou-
tines, and methods.

The other techniques are not, in my view, specific to safety development, but are
principles that are appropriate for any software development, such as following the
coding standard, the coding style guide that leads to improved readability, or the
limited use of global variables.

The norm EN 50128 defines a set of essential rules that coding standards should
include. The most important ones are:

21



2. Background Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. Language specification defines the programming language and its allowed features,

ensuring portability across different platforms.. Scope and base standard when available clarifies the coding standard’s applicability
and references any underlying standards, while the procedure for changing the coding
standard describes how updates and modifications should be handled.. Analysis of the potential faults and recommended treatment identifies possible issues
and provides solutions, complemented by restrictions to avoid the faults, which list
constraints to prevent common errors.
It may also be interesting to note that the standard defines recommended program-

ming languages for different SIL levels.22 It will come as no surprise that C, C++ or
Assembler are among the recommended languages. However, the presence of languages
such as C# or Java may also come as a surprise. The standard also mentions more
historical languages such as Pascal.

2.6 Level Crossing System in CENELEC Countries
According to research,23 the average number of level crossings per 100 km in the Eu-
ropean Union in 2023 is over 50. The record holder is Norway, which has more than
90 level crossings, while the Czech Republic, along with Austria, Hungary, and the
Netherlands, has more than 80.

Figure 2.4. Level rail track crossings per 100 km by countries.

Each country uses a different signaling standard, mainly due to historical develop-
ment. I am describing a few country systems with potential deployment of the devel-
oping device.
22 The EN 50128 standard describes the different programming languages in Table A.15 in Annex A
23 Eurostat, 2023 - https://ec.europa.eu/eurostat/statistics-explained/images/6/65/F6_Level_
rail_track_crossings%2C_2013_and_2023.png

22

https://ec.europa.eu/eurostat/statistics-explained/images/6/65/F6_Level_rail_track_crossings%2C_2013_and_2023.png
https://ec.europa.eu/eurostat/statistics-explained/images/6/65/F6_Level_rail_track_crossings%2C_2013_and_2023.png


. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Level Crossing System in CENELEC Countries

In Figures 2.5, 2.6, 2.7, and 2.8, the passive status indicates that no train is ap-
proaching or present on the crossing, meaning there are no immediate restrictions or
hazards. The active status occurs when a train is in the immediate vicinity or on the
crossing, signaling that entry is prohibited due to an ongoing or imminent train pas-
sage. Lastly, the warning status, used in Germany and some other countries, serves as
a cautionary signal, indicating that the active status will soon follow.

Figure 2.5. Level crossing signalization in Switzerland.

In Switzerland, the crossing lights remain completely off in the passive state. In the
active state, the red lights flash alternately, as illustrated in Figure 2.5.

Figure 2.6. Level crossing signalization in Germany.

In Germany, multiple signaling types are used. The first type consists of a red and
an orange light. In the passive state, both are off. When transitioning to the warning
state, the orange light turns on while the red remains off. In the active state, the red
light is on, and the orange light is off. The second type features only a single red light,
which is off in the passive state and flashes at regular intervals in the active state. Both
options are illustrated in Figure 2.6.

23



2. Background Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.7. Level crossing signalization in Norway.

Norway employs a two-color signaling system similar to Germany’s. The upper light
is red, and the lower light is white. In the passive state, the red light is off, while the
white light flashes at regular intervals. In the active state, the white light turns off, and
the red light flashes at a slightly faster, consistent interval, as illustrated in Figure 2.7.

Figure 2.8. Level crossing signalization in Czech Republic.

In the Czech Republic, three lights are arranged in an inverted equilateral triangle,
as shown in Figure 2.8. The upper two lights are red, and the lower one is white. In
the passive state, the white light flashes at regular intervals while the red lights remain
off. In the active state, the two red lights flash alternately, and the white light turns
off.

Some countries not mentioned here use the same signaling systems. For example,
Austria follows the same signaling as Germany, while Slovakia uses the same system as
the Czech Republic.

Additionally, some level crossings are equipped with audible signals and barriers to
prevent vehicles, pedestrians, and other road users from entering the railway. However,
since these mechanisms are not addressed in the developed equipment, they are not
covered further in this thesis.

24



Chapter 3
System Requirements

In this chapter, I would like to specify the system, functional requirements, and in-
terfaces that I want to design and implement. Finally, I will discuss the hazards that
need to be addressed or questions that need to be answered when designing the system
architecture.

3.1 System Context
The proposed equipment is part of a level crossing safety system that controls traffic
lights and signals. Previously, the system relied on a Simatic PLC1 with digital inputs
and outputs. However, it lacked the ability to analyze system functionality; issues could
only be diagnosed manually using a multimeter. This becomes particularly problematic
when the equipment is located in inaccessible areas or exposed to harsh conditions, such
as freezing temperatures in Norway.

The goal of the new system version is to integrate a component that enables such
analysis, which is precisely the purpose of this device.

The system is designed for use in a country that follows CENELEC standards. The
device itself is a road signal monitoring module that controls LED modules on road and
train signals based on commands from the Simatic PLC. In addition to managing the
signals, it provides diagnostic data about both its own operation and the LED modules,
helping to detect faulty components. The device can also transmit monitoring data to
a higher-level server.

The term system and device will always mean a component of the overall safety
system. If this is not the case, this will always be explicitly mentioned.

3.2 System Specification
My implemented and proposed project serves as a prototype for the final device. Unlike
the final version, it does not need to communicate with the PLC.2 It only needs to read
information from LED modules and transmit the data further.

In the following diagrams and discussions, I will include all device components, not
only relevant for the prototype device. This is necessary because their presence must be
considered when designing the overall architecture, selecting hardware, and progressing
through other development phases.

The device’s safety functions must comply with SIL2, while the final system as
a whole is designed to meet SIL4. However, since this prototype is purely a moni-
toring device and does not introduce any hazards, SIL2 is sufficient.

1 https://www.siemens.com/cz/cs/products/automation/systems/industrial/plc.html
2 The feature can be using a daisy-chain wiring scheme, where multiple devices are connected in sequence,

allowing communication with the Simatic PLC through a single connection. This approach simplifies
wiring, reduces cabling complexity, and enables efficient signal distribution across multiple devices.

25

https://www.siemens.com/cz/cs/products/automation/systems/industrial/plc.html


3. System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.1 Interface Specification

Three interfaces are provided by the device shell:. analog interfaces to LED, that support relevant road signal modules,3. interface for communication with Simatic PLC4. and two Ethernet ports supporting 100Base-Tx, that shall act as a switch to support
daisy-chain connection of multiple devices.

Figure 3.1. The schematic describes a system with all components.

3.2.2 Function Requirements
As previously mentioned, since this is solely a monitoring component, compliance with
SIL2 is sufficient, even though the entire system is rated SIL4.5

The system shall be capable of controlling multiple LED modules installed on road
signals, organized into multiple groups. The reason for multiple groups is that a railway
crossing is typically illuminated by several railroad crossing signals. Each group should
have common control and status signals.

To ensure proper signal operation, the system will evaluate LED functionality by
measuring current. It must support three operational states: power on, static illumi-
nation, and flashing at frequencies specified by railroad regulations.6

Additionally, the system shall support emergency signaling in the event of a Simatic
PLC shutdown.

The system shall be compatible with both high-side and low-side switching of road
signals, accommodating different wiring requirements depending on national regula-
tions. It should also support various hardware configurations for different signaling
states, as described in Chapter 2.6. These configurations include:. two alternating red lights,. two alternating red lights with white light,. flashing red light with flashing white light,. static red light with static yellow light.
3 Relevant for this project is modules Silux/Yulux 2.40RS and Silux/Yulux 1.40.
4 https://www.siemens.com/cz/cs/products/automation/systems/industrial/plc.html
5 Safety integrity level 4, detailed describes Chapter 2.4.1
6 60 flashes per minute and 90 flashes per minute, both with a 1:1 duty cycle.

26

https://www.siemens.com/cz/cs/products/automation/systems/industrial/plc.html


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 System Specification

Monitoring will be provided via a simple REST API.
Within the overall system, my device takes on the role of monitoring. In terms of

SIL functions, which ensure the safety and reliability of critical components operating
the level crossing actuators—the device shall:. Read diagnostics from the current measurement components.. Receive signals from the Simatic PLC indicating the intended signal state.. Transmit data outside the SIL environment using the REST API.. Support additional monitoring beyond SIL functions, enabling advanced analysis in

an easily accessible format.
The Figure 3.1 illustrates a monitoring system with all components.

3.2.3 Human Interfaces
The system shall be designed to include an LED interface that allows maintenance per-
sonnel to quickly and easily identify potential issues or failures. The LED indicators
must be clearly visible even in daylight and should accurately indicate the faulty com-
ponent.

The LED interface should provide information on the following conditions: - Overall
system status (OK / Failed) - Communication status with the diagnostics module (my
device) - Status of connected LED modules (OK / Failed) - Status of individual inputs
(Active / Inactive) – this interface is optional

Additionally, it is crucial for my device to indicate its own status using an LED
indicator, which can be integrated into the system’s human-reporting interface.

3.2.4 Safety
The system should meet SIL4 for isolation between two independent LED chain chan-
nels. According to CENELEC standards, this can be achieved with two independent
LEDs connected to one main unit.

The system control and input channels shall be implemented as primarily indepen-
dent of each other, in accordance with norm EN 50129. The system shall fulfill SIL2
for control LED modules.

The generic device shall fulfill SIL2 for the evaluation of its state. The Ethernet
communication and diagnostics LEDs shall be developed as non-SIL functions.

3.2.5 Diagnostics
The generic device shall provide diagnostic data supporting failure detection, such as in-
put voltage and current through each LED module. Optionally, the generic device shall
also provide information on internal signals that could assist with failure detection.7

The generic device shall provide an interface for the measurement of the supply
voltage of road signals (e.g., DC power supply rail).

The generic device shall provide its internal temperature (diagnostic feature only).

3.2.6 Project Limitation
As outlined earlier, I define the final target device within the device requirements.
However, the scope of this thesis focuses solely on developing a prototype. This proto-
type does not implement all functions, such as communication with the Simatic PLC,
daisy-chained wiring, or firmware updates via Ethernet.
7 Note: For failure detection, it is sufficient to identify the faulty component without determining the

precise cause. Indication of a faulty generic device itself, a broken LED module, or a missing power supply
is adequate.

27



3. System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Nevertheless, understanding the full context is essential for a comprehensive overview.

Therefore, the system requirements are defined for the entire device, not just the pro-
totype.

3.3 Hazard Descriptions
The railway crossing signal unit provides indications to road traffic participants, in-
forming them whether it is safe to cross the railway. In the following discussion, the
term signalization refers primarily to the signals intended for road traffic participants,
not for trains.

The system can operate in one of the following four states:

. The system is operational, and the signalization functions correctly.. The system is faulty, and the signalization is non-functional.. The system is faulty, and the signalization continuously indicates that the railway
crossing cannot be crossed.. The system is faulty, and the signalization continuously indicates that the railway
crossing can be crossed.

3.3.1 State Analysis
In the first state, the system operates in its normal and desired condition. This is the
ideal state, and the objective is to maximize the time the system remains in this state.

The second state presents a problem but does not constitute a hazard. When the
signalization is non-functional, the responsibility shifts to the users of the crossing, i.e.,
those attempting to cross the railway. The crossing does not provide incorrect signals;
it provides no signals at all. This situation impacts system availability, and thus, efforts
should be made to minimize the occurrence of this state.

The third state is problematic and represents a partial hazard. If the signalization
continuously indicates that the crossing cannot be traversed, users may choose to cross
despite the signal, acting contrary to the indication. This behavior can lead to potential
hazards, as the system appears unreliable, eroding trust among users. A solution, such
as using an alternative crossing, may not always be feasible, particularly in mountainous
regions like Switzerland,8 where railway crossings are often widely spaced.

The fourth state is the most critical, as it constitutes a significant hazard. The
signalization continuously indicates that the crossing is safe, even when it may lead
to a collision with an approaching train. This state must be rigorously prevented and
mitigated to ensure it does not occur.

8 Based on Figure 2.4, a simple calculation indicates that railway crossings in Switzerland are approxi-
mately 3 km apart. However, it is necessary to consider that the concentration of crossings is higher in
populated areas. Consequently, the average distance may increase to several kilometers, particularly in
mountainous regions such as Switzerland, where this distance can be significant.

28



Chapter 4
Hardware

In this chapter, I would like to specify the hardware requirements, design, and describe
the selected microcontroller development kit.

4.1 Hardware Requirement

The proposed device must support communication through the following interfaces:1

. An analog interface for reading LED module values,. I/O communication with the Simatic PLC (though out of scope for this work, the
necessary pins must be included),. Two Ethernet ports supporting 100Base-TX, functioning as a switch to enable daisy-
chain wiring.. Additionally, the device should manage indication LEDs as a user interface and
support the connection of non-SIL peripherals for analysis.

The device shall also comply with the SIL2 standard.

4.2 Microcontroller Options
Based on these options, I looked for different microcontrollers on which to build the
device. I shortlisted 5 devices that could be used. I compare four of them in Table 4.1.

Two of them meet the requirement for an internal ADC converter, which in the end
could not be used anyway, because ADC converters must be able to measure voltages
up to 36 V. The second reason for using an external ADC is the necessity to meet
safety requirements defined in 3.2.4, which mandate that the device must employ two
independent channels for the LED modules connected to the main control unit. So you
will need to use external converters that can be communicated with via SPI, I2C or
other peripherals. Therefore, I discarded the STM32MP1 and the NXP i.MX RT1060
devices whose great advantage was this functionality.

Microchip SAM E70 microcontroller has only one Ethernet port; it would be neces-
sary to connect an external switch, so I rejected it.

As a result, I was deciding between devices from Texas Instrument’s Sitara series,
specifically the AM335x and AM243x. However, the devices from the AM335x series
are built on the Arm Cortex-A8 core, which is unnecessarily powerful for my purposes
and is more suited for handling 3D graphics, graphics accelerators, running higher-end
operating systems like Android or Linux, etc [38]. That’s why in the end I opted for the
AM243x processor from Texas Instruments. For development, I will use the Evaluation
Board LaunchPad AM-243.

1 By requirements from the Chap 3.2.

29



4. Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feature TI Sitara AM335x STM32MP1

Analog Inputs External ADC (SPI/I2C) Integrated ADC

Serial Communication UART (RS232/RS485) UART (RS232/RS485)

Ethernet Ports 2x 100Base-Tx (Switch) 2x 100Base-Tx (Switch)

Indicator LEDs GPIO Support GPIO Support

Non-SIL Peripherals SPI, I2C, USB SPI, I2C, USB, SDIO

Feature NXP i.MX RT1060 Microchip SAM E70

Analog Inputs Integrated ADC Integrated 12-bit ADC

Serial Communication UART (RS232/RS485) UART (RS232/RS485)

Ethernet Ports 2x 100Base-Tx (Switch) 1x 100Base-Tx (Ext.Switch)

Indicator LEDs GPIO Support GPIO Support

Non-SIL Peripherals SPI, I2C, USB, CAN SPI, I2C, USB, CAN

Table 4.1. Comparison of suitable Microcontrollers [34–37]

4.3 Microcontroller Description
The Evaluation Board LaunchPad AM-243x (LP-AM243x)2 is equipped with the
AM2434 ALX MCU, which is composed of 4x Arm Cortex-R5 and 1x Arm Cortex-M4
cores. The Evaluation Board has a large number of interfaces including Industrial
Ethernet, Fast Serial Interface, CAN transceiver, and 512MB QSPI flash memory. For
debugging, the Evaluation Board is equipped with the On-Board debugger XDS110 [39].

The device is organized into two domains: MAIN and MCU.

4.3.1 The MAIN Domain
The MAIN domain is made up of Arm Cortex-R5, which are 4 on the development
kit. Actually, it is 2x two real-time cores because it is a Dual-Core Cortex-R5F sub-
system. The architecture is based on the ARMv7-R instruction set and supports two
configurations at boot time:

. Dual core mode: means two independent free-operating cores (Asymmetric Multi-
Processing, no coherence).. Single core mode: one free-operating core and one non-operating core.

The cores also allow operating in lockstep mode. Lock-step mode refers to a fault-
tolerant operational configuration in which a redundant instance of the CPU logic (and
2 This processor series shares a similar architecture, registers, and most features with the AM64x series.

Consequently, the majority of documentation for these two processor series is identical. This can occasion-
ally be confusing, primarily because the documentation and manuals focus on the AM64x version, which
offers a broader range of resources, internal modules, and peripherals.

30



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Microcontroller Description

optionally the Accelerator Coherency Port - ACP) executes in parallel with the primary
CPU. Both the primary and redundant logic are driven by identical inputs and share the
same cache memory, eliminating the need for duplicate cache RAMs. The redundant
logic operates synchronously with the functional CPU, replicating its behavior in real
time. However, it does not influence the system’s outputs or processor behavior directly.
Its primary purpose is to enable the detection of faults by comparing the results of the
redundant logic with those of the functional CPU [40]. However, I don’t use it in my
project, as I use the isolated core option for safe functions. By TI safety documentation,
AM243x doesn’t support full Lockstep mode3 [41].

The MAIN domain also integrates several subsystems that serve to operate real-
time systems, meet industry standards for communication, memory access or inter-core
communication. Specifically, these are:

. Programmable Real-Time Unit and Industrial Communication Subsystem (PRU-
ICSSG), which in addition to real-time support for cores, provides support for
industrial standards such as EtherCAT, PROFINET, EtherNet/IP, PROFIBUS,
Ethernet Powerlink and SERCOS.. 16-bit DDR memory subsystem (DDR16, also referred to as DDRSS) for SDRAM
support.. Region-based Address Translation Module (RAT), which handles the translation of
a 32-bit address into a 36-bit output address.. Data Movement Subsystem (DMSS) for efficient data movement between software,
firmware and hardware in all combinations.. Mailbox (MAILBOX) system for inter-core communication.. Other standard subsystems to support microcontroller and microcomputer functions
such as: Spinlock, ADC, GPIO, I2C, SPI, UART, CPSW3G (3-port Gigabit Ethernet
Switch), PCIE, Serializer/Deserializer (SERDES), USBSS (Universal Serial Bus 3.1
Subsystem), GPMC (General Purpose Memory Controller), ELM (Error Location Mod-
ule), FSS with OSPI (Flash Subsystem with Octal Serial Peripheral Interface), MMCSD
(Multi-Media Card/Secure Digital Interface), ECAP (Enhanced Capture Module),
EPWM (Enhanced Pulse-Width Modulation Module), EQEP (Enhanced Quadrature
Encoder Pulse Module), MCAN (Controller Area Network) to support CAN, FSI-RX
and FSI-TX (Fast Serial Interface Receiver and Transmitter) and Timers.. Internal Diagnostics Modules that provide monitoring and diagnostic functions re-
quired to achieve certain safety compliance levels.

4.3.2 The MCU Domain
The MCU domain is based on the Arm Cortex-M4F, which is seeded once on the de-
velopment kit. In its documentation, TI refers to the MCU domain as M4FSS Island,
MCU Island, MCU Channel, or MCU Subsystem. I will stick to these terms.

The processor core can be configured as an isolated safety MCU or general-purpose
MCU. The processor uses the ARMv7-M instruction set architecture, supports the
Nested Vectored Interrupt Controller (NVIC) with 64 inputs, and has the ability to
execute code from internal or external memories, etc.4

Similarly to the MAIN domain, the MCU domain consists of multiple subdomains
in addition to the core, which support standard microcontroller functions in hardware.
3 Details are described in the Functional Safety for AM2x and Hercules Microcontrollers on the official

TI webpage https://www.ti.com/product/AM2434.
4 More details are described in the device documentation https://www.ti.com/lit/ug/spruim2h/

spruim2h.pdf?ts=1745386413600.

31

https://www.ti.com/product/AM2434
https://www.ti.com/lit/ug/spruim2h/spruim2h.pdf?ts=1745386413600
https://www.ti.com/lit/ug/spruim2h/spruim2h.pdf?ts=1745386413600


4. Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
These include: MCU-GPIO, MCU-I2C, MCU-SPI, MCU-UART and MCU Timers. Like the
MAIN domain, MCU island supports MCU Internal Diagnostics Modules which provide
monitoring and diagnostic functions required to achieve certain safety compliance levels.
The mechanisms are:

. One instance of the Dual Clock Comparator (MCU-DCC) module, which is used to
determine the accuracy of the clock signal while the application is running.. One instance of the Error Signaling Module (MCU-ESM) for safety-related events
and errors aggregation from throughout the device into one location.. Multiple ECC aggregator modules supporting ECC mechanisms for providing in-
creased system reliability via reduction of memory software errors by allowing single-
bit errors to be detected and corrected (SEC) and double-bit errors to be detected
(DED).. Memory Cyclic Redundancy Check module used to perform CRC to verify the in-
tegrity of a memory system.

A limitation of the chip placement on the development board used in this work is
that not all pins of the isolated core are accessible. The isolated core exposes only four
peripheral interfaces, to which the UART is connected; no other interfaces are available.
This presents a minor complication for future development. A more detailed discussion
of this issue is provided in the following chapter, in the context of designing the specific
system architecture.

The MCU domain is designed to ensure isolation from the broader SoC architecture,
incorporating Freedom From Interference (FFI) mechanisms to enhance system relia-
bility and security. The key isolation features include:

. Independent interconnect architecture to segregate MCU communication pathways.. Implementation of firewalls and timeout gaskets to enforce access control and prevent
unauthorized interactions.. Controlled reset isolation to enable independent reset management for the MCU
domain.. Dedicated Phase-Locked Loop (PLL) and Memory-Mapped Register (MMR) control
for autonomous clock and configuration management.. Separate I/O voltage supply rail to ensure electrical isolation and minimize interfer-
ence from other SoC components.

4.4 ADC Module Description

For reading data from the LED modules, I selected an Analog Devices ADC module,
specifically the CN0254 evaluation board with the AD7682 ADC. This cost-effective,
highly integrated 16-bit, 250 kSPS5 8-channel data acquisition system can digitize
industrial-level signals ranging from ±10 V [42]. The module supports communica-
tion via various peripherals, including I2C, SPI, or USB, when paired with an external
converter from Analog Devices. For this application, I chose to use the SPI interface.

5 kilosamples per second

32



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Hardware design

Figure 4.1. Photo illustrates the ADC Evaluation Board connected with a few modifica-
tions. 1) On-board SPI pins, 2) 6 V power supply, 3) ADC inputs.

The device requires a 6 V power supply and can measure input voltages in the range
of 0 to 10 V.6 To utilize the CN0254 evaluation board, two points on the printed
circuit board need to be connected.7 Further details on ADC communication via SPI
are provided in Chapter 6.7.

4.5 Hardware design

The primary component of the entire system is the aforementioned Sitara AM243x de-
velopment board. Connected via SPI, an external Analog-to-Digital Converter (ADC)
device is responsible for reading values from the LED module. The processor commu-
nicates with a Simatic PLC through binary outputs. The device employs LED diodes
to display its current status. Additionally, it communicates with a higher-level device,
functioning as a gateway, via Ethernet. All system is illustrated in the figure 4.2.

6 Operation of the final system requires hardware modifications, as the input signal must be in the range
of 6 to 24 V.
7 Specifically, two modifications were required to enable the use of the onboard SPI and power the ADC

evaluation board from a 6 V supply. These involved adjusting the resistance and grounding. I consulted
with experts on this matter and will not discuss these changes further, as I am not an expert in this field,
and this thesis does not focus on the hardware aspects of the project.

33



4. Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4.2. Hardware design with peripherals

34



Chapter 5
Device design and architecture

In this chapter, I propose the architecture, encompassing all mechanisms and processes
intended for inclusion in the final device, as opposed to the prototype developed within
the scope of this thesis.

5.1 System Requirements Analysis
The system is designed to meet both Safety Integrity Level (SIL) requirements and non-
SIL requirements, ensuring robust functionality for safety-critical and supplementary
tasks. For clarity in development and analysis, the device is divided into two primary
components: the SIL component and the non-SIL component.

The SIL component, operating on the isolated M4 core, monitors the functionality
of LED modules, communicates their status to the Simatic PLC, and shares this data
with the non-SIL software. Due to the M4 core’s isolation requirements, shared memory
is not feasible; instead, communication is facilitated by hardware mechanisms provided
by the AM243x system, such as inter-core messaging or dedicated registers.

Figure 5.1. Diagram illustrating the software architecture overview.

The non-SIL component retrieves status data from the SIL component regarding the
LED modules, ensuring reliable data access through AM243x inter-core communication
mechanisms. It manages the bootloader and initialization of the SIL component and

35



5. Device design and architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
hosts a REST API server to enable data monitoring and software updates. Additionally,
it supports auxiliary non-SIL monitoring functions.

Figure 5.1 provides an overview of the software architecture, illustrating the rela-
tionships between the SIL and non-SIL components and specifying the interfaces used
for communication with external systems. This diagram is relevant to the prototype’s
architecture.

To better understand, let’s divide the software into four basic components:

. Booting. Standard operation (Safety Software and Non-SIL software). Software update. Safety shutdown

5.2 Booting
First, let’s describe the boot process. The AM243x is a multi-core processor that
utilizes a multistage booting sequence. By TI naming convention, the booting sequence
is divided into ROM boot and SBL boot.

5.2.1 ROM Boot
The ROM boot (also RBL) is stored in read-only memory and is almost considered as
part of the SoC. As soon as the board is powered ON, the ROM bootloader or RBL
starts running. The RBL is the primary bootloader. Depending on which boot mode
is selected, the RBL will load the secondary bootloader or SBL from a boot media. It
is via UART in our case. The rest of the booting is done by the SBL [43].

The ROM code is code that is executed in this phase.
The ROM can operate in the three modes by the device type:

. HS-Field Securable device (HS-FS) - This is the HS device state before the customer
keys are provisioned in the device (the state at which the HS device leaves the TI
factory); secure features are not available and the device protects the ROM code, TI
keys, and certain security peripherals; the device does not force auth for booting.. HS-Field Enforced device (HS-SE) - This is the HS device state after the customer
keys are successfully provisioned in the device; all security features are enabled, all
secrets within the device are fully protected, all of the security goals are fully enforced,
the debug override sequence is supported, and the device forces security booting.. General-purpose device (GP) - This is the non-secure device state intended for
general-purpose applications; no security features are enforced, secure booting is
not required, and the device allows open access to all peripherals and debug features
without authentication.

Final system is targeting the HS-SE device type. The thesis prototype device is
targeting the GP device type only.

In a general-purpose device, DMSC ROM (Device Management System Controller
ROM) runs on the Arm Cortex M3 and performs the following functions:

. Device management. Configures the boot vectors and controls reset release of R5 core. That is, DMSC is
the boot controller of the R5 core.. IPC1 configuration via Main DMSS rings and Secure Proxy

1 Inter-Processor Communication

36



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Booting

. PLL configuration (R5 and SA2UL2). X509 certificate parsing. SA2UL configuration to SHA512 for image integrity checks. DMSC firmware loading [45]

5.2.2 SBL Boot

The SBL boot (Secondary Bootloader) typically does a bunch of SoC-specific initializa-
tions and proceeds to the application loading. Depending on the type of SBL loaded,
the SBL looks for the multicore app image of the application binary at a specified
location in a boot media.

5.2.3 Boot Modes

Device allows several boot modes divided into two classes:

. host boot modes (Ethernet, UART, USB, ...). and memory boot modes (MMCSD,3 GPMC,4 QSPI, ...).

Device provides Primary Boot Mode and Secondary (Backup) Boot Mode, that is
started when Primary Boot Mode fails (it is illustrated in Figure 5.5). The mode
is set up by BOOTMODE pins.5 On the Devkit, a hardware mutex is placed to control
BOOT pins (illustrated in Figure 5.2).

Figure 5.2. The Boot Pin Mutex on the Devkit board LP-AM243x.

2 The SA2UL subsystem is designed to provide a generic cryptographic acceleration for different use
cases such as secure boot, secure content, key exchange etc. [44].
3 eMMC Flash or SD card
4 NOR flash, NAND flash
5 Detail description can be found in the AM243x Technical Reference Manual in the Chapter 4.3.1 [45].

37



5. Device design and architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.4 Device Boot Phases

In my device, I divide the boot process into two phases. These phases are not the same
as RBL and SBL. It is a different division. RBL and SBL are, to some extent, part of
both phases.

The first phase, which I call the bootloader, is responsible for loading software from
flash memory into individual CPUs, verifying the validity of certificates, performing
basic initialization, and managing software versions.

During the second phase, the device is already running standard operations on each
core of the device.

In addition to these two phases, I include a third phase called flash writer. This phase
is tasked with downloading software during the initial loading into the device and is
only executed when the device does not boot from the primary flash memory source but
from a secondary (backup) Ethernet source. This part of the code is provided to the
device before the actual loading from a server that uploads the software and is never
stored in the device’s flash memory.

Overall, the software comprises the following parts:

. Flash writer: a component that ensures the loading of software into flash memory.. Bootloader: a component that is launched first after a successful system startup and
manages other software parts, such as loading and validation.. Images for each core: a component that contains running standard operations.

Figure 5.3. Overview of the boot process, illustrating the relationships and transitions
between the bootloader, flash writer, and core operation phases.

Due to the multi-core architecture, it is necessary to use the DMSC (Device Man-
agement System Controller) in the device, which is managed by firmware referred to
by TI as SYSFW (System Firmware). This layer functions as a black box and provides
an API for Resource Management, Power Management, and Security. The DMSC is
uploaded in the device as part of the SDK with device images.

5.2.4.1 Detailed SYSFW description

SYSFW comprises two primary components: TI Foundational Security (TIFS) and
Device Manager (DM). TIFS provides security services, including authentication and
decryption of binary data using root-of-trust keys, processor boot control, JTAG unlock,
access to device-unique keys, and management of Customer One-Time Programmable

38



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Booting

(OTP) eFuses. Additionally, TIFS configures device firewalls and Initiator-Side Se-
curity Control (ISC) to manage initiator credentials, controlling access to memories,
peripherals, and other System-on-Chip (SoC) resources. These services support critical
security use cases, such as authenticated processor boot, device configuration, trusted
execution environments, and isolation [46].

The DM component delivers centralized Resource Management (RM) and Power
Management (PM) services essential for device operation. PM services encompass con-
figuration and control of module power states, clock states, frequency settings, multi-
plexer selections, and system resets. RM services manage the allocation and assignment
of key SoC resources, including Direct Memory Access (DMA), Ring Accelerator, Inter-
rupt Aggregator, Interrupt Router, and various Interrupt Router instances across the
SoC.

SYSFW is distributed as part of TI’s Processor SDKs. TIFS is provided as a binary-
only image, which, on high-security devices, is signed and encrypted with TI’s propri-
etary keys, rendering it closed to development and intended for integration as a black-
box component. TIFS is loaded via the MAIN R5F bootloader during the default boot
sequence in the SDK, with TI supplying standard board configuration entries to support
SDK examples and use cases.

The DM is implemented through a set of libraries and a reference TI System Con-
trol Interface (TISCI) server running on the DMSC core, provided via the SCIClient
component in the Processor SDK RTOS. TI SDKs include a prebuilt RTOS-based DM
reference implementation, loaded through standard device boot procedures.

Neither TIFS nor DM (including RM and PM services) is safety-certified, as they
are developed according to TI’s baseline quality process rather than functional safety
standards.

The DMSC-Lite, an ARM Cortex-M3-based subsystem, is the first subsystem acti-
vated after a power-on reset in the AM243x device. It serves as the central hub for
both device management and security control, orchestrating the initial boot sequence,
resource allocation, and security configurations. The DMSC-Lite executes the SYSFW,
ensuring seamless integration of TIFS and DM services to support the multi-core ar-
chitecture’s operational and security requirements [46].

5.2.5 Boot Image Format

Each block consists of a certificate and the software itself and is loaded into flash
memory at a specific address (illustrated in the Figure 5.4). The device uses X.509
certificates described in the norm RFC 52806.

In general, an X.509 certificate contains a public key which has been signed by
a private key. The public ROM code does not directly use the keys. In non-secure
devices (GP), the public key value is in general a don’t care condition. The exception is
certificates containing a degenerate RSA public key. GP devices with a degenerate RSA
key allow for integrity checking of most (but not all) of the certificate. As I mentioned
below, we are using the device in the GP mode. It means that our device integrity in
the prototype is validated by the degenerate RSA public key [45].

The ROM code is getting two additional pieces of information from the X.509 cer-
tificate:

. The total size of the X.509 certificate. The total size of the boot image

6 https://datatracker.ietf.org/doc/html/rfc5280

39

https://datatracker.ietf.org/doc/html/rfc5280


5. Device design and architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The ROM defines several extensions that are used only by TI for boot. These are

placed in the extensions field of the TBS7 certificate.

Figure 5.4. The Boot Image format.

5.2.6 Detailed System Initialization Description

During the DMSC initialization phase, as depicted in Figure 5.6, the R5 core reads the
boot mode pins to configure the appropriate peripheral interface, enabling access to the
boot image. The R5 performs a preliminary validation of the image before transferring
it to the DMSC. The DMSC ROM then verifies the code and loads the validated boot
image into on-chip RAM. If the image verification fails but the boot mode pins indicate
a secondary (backup) boot mode, the DMSC ROM loads the backup image into on-chip
RAM. This functionality is utilized by our system to initially boot software using the
flash writer component. After receiving the image, the R5 enters a clean state and idles.
The DMSC ROM asserts a reset on the MCU, redirects the boot vector to the newly
loaded image, and releases the reset. This process restarts the R5 with the Public ROM
code fully disconnected, as illustrated in Figure 5.5.

The boot sequence then proceeds based on the boot mode: for the primary mode,
the system boots from flash memory and executes the bootloader; for the secondary
mode, the system boots from a backup source, activating the flash writer component
to download the initial software to flash memory.

7 to be signed

40



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Booting

Figure 5.5. Diagram illustrating the complete system initialization process, detailing the
sequence of boot image loading, verification, and core reset for R5 startup.

Note: The DMSC ROM configures a 3-minute watchdog timer (MCU_RTI0) time-
out. The MCU boot must complete within this period; otherwise, a watchdog timer re-
set occurs. Once the R5 image (SBL) is loaded, the DMSC ROM restarts the watchdog
timer for an additional 3 minutes upon entering the R5 SBL. The customer-provided
MCU image must load and install the TI-provided SYSFW image into the DMSC,
which manages the watchdog timer during runtime [45].

5.2.6.1 The DMSC Initialization

The DMSC serves as the boot controller for the Public ROM, managing essential con-
figurations such as firewalls, clocks, PLLs, and inter-core communication modes.8 As
shown in Figure 5.6, the DMSC releases the reset for R5 CPU0.9 Its configuration de-
pends on the specified boot mode, with host boot mode imposing different requirements
compared to memory boot mode.

8 The device supports two primary inter-core topologies: Proxy and Ring.
9 R5FSS_0-0

41



5. Device design and architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 5.6. Diagram detailing the DMSC initialization process, a critical subset of system
initialization, highlighting configurations for boot mode, peripherals, and R5 CPU0 reset,

as part of the overall boot sequence in Figure 5.5.

5.2.7 Bootloader Function Description

The bootloader is a critical component of the system. Its primary tasks are:

. Loading software into the RAM of individual cores and verifying the authenticity of
each core’s image using an X.509 certificate.. Performing basic system configuration required for the subsequent program execu-
tion, such as setting up PLLs, firewall rules, communication topology, and other
parameters. These configurations are similar to those managed by the DMSC con-
troller, as illustrated in the Figure 5.6. Additionally, the bootloader must establish
an isolation layer to enable the M4 core to operate in isolated mode. The precise
clock and PLL configuration is later finalized by the M4 core upon its startup.

The bootloader always runs on the real-time core R5_0-0. It is activated after the
DMSC transfers control to it. The bootloader configures essential system resources
and then reads information stored in flash memory. Based on this information, it
loads either the original or new software into the RAM of all processors, verifying its
authenticity using an X.509 certificate. If all images are valid, the system reboots and
initiates standard operation. If the original software fails, the bootloader restarts and
attempts to boot again. If authentication of new images fails, the system saves an error
code to the failure info variable in the boot info structure in the flash, and the system
transitions to a process defined within the software update sequence, as described in
chapter 5.3.

42



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Booting

Figure 5.7. The diagram illustrates the bootloader process.

5.2.8 Flash Memory

Flash memory is used to store software for individual cores and information that must
be retained in the device even after a power outage. It consists of four main components:

. Bootloader Image: Contains the software for running the bootloader. The image
comprises an X.509 certificate and a compiled binary code file, as illustrated in Figure
5.4.

. Device Info: Stores static information such as the serial number, MAC address, cer-
tificates, and other device-specific data.

. Boot Info: A simple structure containing three values: failure count, failure info, and
the addresses of the original and new software. Access to this memory section must
always use pseudo-atomic operations to ensure error-free updates, particularly during
software updates. (The pseudo-atomic operation mechanism is described in Chapter
5.2.9.) The failure count indicates whether the new software launched successfully
and failure info variable contains the error code, with further details provided in the
software update section 5.3.

. Original Software: A memory region for the functional, already in-use software for
all cores.

. New Software: A memory region for new, unverified software for all cores.

43



5. Device design and architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 5.8. The illustration of flash memory map structure.

The Bootloader Image and Device Info sections are written only once during the
initial software loading via the flash writer component. Afterward, these flash memory
regions are locked, allowing read-only access and preventing overwrites.

5.2.9 Pseudo-atomic Flash Update Operations
Pseudo-atomic operations are necessary primarily to prevent a state where memory
is only partially modified, which could occur due to events such as power failures or
high-priority interrupts. To mitigate this, a modified bitwise memcpy operation using
the Compare-and-Swap instruction, which verifies update consistency, would ideally
be employed [47]. However, this approach is not feasible, as the system operates over
external flash memory rather than stack memory. Flash memory updates rely on paging,
where an entire page is rewritten for any change. While this might seem to satisfy the
requirement for single-operation updates, the challenge lies in the fact that updates are
managed by an external controller via Quad Serial Peripheral Interface (QSPI) flash.
Consequently, an alternative solution is required.

The proposed solution employs encapsulation to ensure data integrity, guaranteeing
that the most recent valid data is used during reads. It duplicates the boot information
block, storing each in a distinct memory block, referred to here as Block A and Block B.
Each block comprises a data section (as described previously) and a header containing
a Cyclic Redundancy Check (CRC) and an identifier (ID). The CRC verifies data
integrity, while the ID indicates which block is newer.

The read operation involves loading both blocks, with the block having a valid CRC
and the higher ID designated as the valid data.

The write operation targets the memory block without a valid CRC or, if both
blocks have valid CRCs, the block with the lower ID. The ID is cyclic, and to prevent
overflow, the value 0xFF is treated as lower than 0x00. After writing, a read operation
is performed to verify that the data was written correctly. If verification fails, the write
operation is repeated.

5.2.10 Flash Writer Description
The flash writer is a specialized component integral to the software update process, yet
designed to operate independently as it is also used during the initial software loading
of the device. The term flash writer refers to a standalone module responsible for the
first-time provisioning of the device. When the device attempts to load data from flash
memory and finds it empty—typically during factory settings, as no data has been

44



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Booting

written yet—it activates the secondary (backup) boot mode, where the flash writer
plays a critical role. The primary objectives of the flash writer are:

. To receive software images and store them at designated locations in flash memory.. To create the flash memory structure and configure write protection for static sec-
tions.

The flash writer is employed in host-based boot modes. The AM243x processor
supports booting from various external sources, but for this work, two are relevant:
UART and Ethernet. UART is used in the prototype development phase, while Ethernet
is intended for the final device.

The Public ROM code provides the BOOTP/TFTP protocol for Ethernet-based booting.
The device supports both Ethernet interfaces RMII and RGMII based on the hardware
configuration. For UART-based booting, the XMODEM protocol is utilized.

5.2.10.1 The Ethernet Booting Process Description

After device configuration, the bootloader performs a standard BOOTP/TFTP boot.
The device sends a BOOTP request with its MAC address to a host TFTP server to
be assigned an IP from a pool of addresses. The timeout for each BOOTP packet is
4 seconds, and the ROM will attempt 10 BOOTP retries, after which the boot mode
will fail. If the connection is established, the device initiates a TFTP download and
is able to receive image data encapsulated in Ethernet packets.10 There is a timeout
of 1 second to receive a response for the READ request, and the ROM will retry the
READ request 10 times, after which the boot mode will fail. If the TFTP download is
successful, data received is stripped of its network headers and the boot data is stored
in internal RAM. When the transfer completes and the image is found to have good
integrity, the ROM Code will branch to the address defined in the Boot Info field of
the boot header [45].

There are a few limitations as received packets cannot be IP fragmented or only DIX
Ethernet headers are supported.11 But they don’t limit my project in any way.

5.2.10.2 The UART Booting Process Description

The ROM Code is always configured on the UART with a transmission speed of 115200
kbaud in 8-n-1 mode.12

After the ROM code configures the UART interface, the device transmits ASCII
capital ’C’ characters as pings for several seconds, detectable by the host. An example
of the XMODEM protocol in half-duplex transfer is shown in Figure 5.10. The UART
boot mode exclusively supports the CRC mode of the XMODEM protocol, with no
support for CHECKSUM mode, and accommodates block sizes of 128 or 1024 bytes.
The host must initiate the transfer of the boot image using the XMODEM protocol
before the device’s pings cease [45].

Figure 5.9. The format of XMODEM 1024-byte and 128-byte long frame.

10 Device supporting only IPv4 packets.
11 Device does not support 802.3 with SNAP/LLC, DIX Ethernet with VLAN, and 802.3 with VLAN
and SNAP/LLC.
12 This mode means 8 data bits, no parity, and 1 stop bit [48].

45



5. Device design and architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Field Value Description

STX 0x02 The start character for 1024-byte CRC data blocks.

SOH 0x01 The start character for 128-byte CRC data block.

The block number. The first block has
Block Num 0x01-0xFF value 1, and the block number

wraps around 0xFF to 0.

Inv Block 0xFE-0x00 The inverse block number
Num (bit inverse of the block number).

CRC Based on data The 16-bit CRC generated from the polynomial
0x1021.

Table 5.1. The table describes fields in the XMODEM frame format illustrated in the figure
5.9.

The Figure 5.9 illustrates the XMODEM frame format. The meaning of each field is
as follows:

Figure 5.10. The example of XMODEM Transfer Protocol in half-duplex mode.

5.2.10.3 Flash Writer Process

The flash writer sequentially receives and stores data in flash memory according to the
flash layout illustrated in Figure 5.8. The process begins by storing the bootloader image
for the R5_0-0 core at address 0x00000000. Next, it creates the device info structure,
populating it with received data, and generates an initial boot info structure, which
may be empty.

46



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 Software Update Process

Figure 5.11. The diagram illustrates the flash write sequence.

The flash writer then locks the flash memory regions containing the bootloader image
and device info to prevent future overwrites, ensuring these sections remain immutable.
Subsequently, it stores the incoming images for each CPU core in the original software
section of the flash memory. The boot info structure is updated to specify the address
of the original software, with the new software address left undefined and the failure
count and failure info set to 0. Finally, the flash writer illuminates an LED to indicate
the successful completion of the software download process.

5.3 Software Update Process

The software update component operates during the standard runtime of the program
on the primary real-time core, R5_0-0. Its primary objective, as implied by its name,
is to facilitate the migration of the system to a new software version. Given the need to
update secure software, this process is non-trivial and requires careful design to prevent
undefined states or unrecoverable errors.

The software update process is structured as follows: The update is initiated when
the web interface receives a POST request. First, the failure count variable in the flash
memory’s boot info structure is set to 1 using a pseudo atomic operation. The failure
count serves as a counter for attempts to launch the new software, with its role in
determining the software version to boot detailed in the bootloader section 5.2.7. A
failure count of 0 indicates that the original software is valid, while a non-zero value
signifies an ongoing attempt to boot the new software. The maximum number of
attempts is configurable, set to 4 in our case, allowing three retries. Incoming data is
then received and stored at the new software address in flash memory, as defined in the
flash memory layout Figure 5.8.

After storing the data, the device restarts, and the bootloader detects the non-zero
failure count, prompting it to attempt booting the new image. The system then enters
standard operation to verify whether the device functions correctly. Two outcomes are
possible:

. Failure: The failure count is incremented by 1, and the device restarts. If the failure
count reaches the maximum limit (e.g., 4), the boot info structure is updated to reset
failure count to 0, ensuring the original software is booted on the next attempt. An
error code corresponding to the failure is recorded in the failure info field, with all
states detailed in Table 5.2. The Figure 5.12 illustrates the failure count variable
states.. Success: The boot info structure is updated to set the failure count to 0, and the
addresses of original software and the new software are swapped, marking the update
as successful.

47



5. Device design and architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 5.12. Diagram illustrates the failure count variable from boot info structure in the
flash memory.

Value Description

0x00 No error code.

0x01 Software update failed, the system uses the original version.

0x02 Software update failed, the new software has not valid certificate.

0x03 Software initialization check failed, the SPI communication
doesn’t operate correctly.

0x04 Software initialization check failed, the Inter-core communication
doesn’t operate correctly.

0x05 Software running check failed, the Inter-core communication
doesn’t operate correctly.

0x06 Software initialization check failed, CPU resources

0x07 Testing Initial Sequence Timeout

0x08 Error detected in the ESM

0xFF Not defined error

Table 5.2. The table describes codes in the Failure Info Memory Block in the flash at the
position defined by 5.8.

48



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 Software Update Process

Figure 5.13. Diagram illustrating the software update process.

5.3.0.1 Ensuring Robustness in Software Updates

A key challenge is verifying that the software update completed successfully and pre-
venting failures that could render the system inoperable. The potential issues and their
mitigations are as follows:. Corrupted or Malicious Software: If invalid software is uploaded (e.g., due to an attack

or process error), the bootloader’s X.509 certificate validation during RAM loading
detects the issue, logging error code 0x02 in the failure info field of the boot info
structure.. Damaged Data: Corrupted data is similarly addressed through certificate-based in-
tegrity checks, ensuring the software image’s validity [45].. Restart During Update: If the device restarts (intentionally, unintentionally, or due
to a power outage) during the update:

49



5. Device design and architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. Incomplete Software Upload: Certificate validation prevents partial uploads from

being executed.. Interruption During Runtime Validation: The system increments the failure count
and retries, as the bootloader uses the failure count to boot the new software upon
restart.. Restart Before Boot Info Update: The device uploading the software receives a neg-
ative acknowledgment, indicating an incomplete download. Once the boot info is
updated, the internal mechanism handles such errors autonomously.. Residual Old Code in a Core: This scenario is impossible, as the device restart clears

all CPU RAM contents, and the bootloader reloads the new software into RAM from
flash memory.

The second question addressed Ascertaining whether the software update was suc-
cessful was partially addressed in the software update section. To confirm that the
updated software operates correctly, the system transitions to the standard runtime
phase, which begins with an initialization check. This check verifies peripheral con-
figurations, communication integrity, and other critical parameters. If an error occurs
during this phase, the device enters a safety shutdown, as detailed in Chapter 5.4. Upon
successful completion of the initialization check, further described in Chapter 5.5, the
system is deemed operational, and the boot info structure is updated, as previously
outlined.

5.4 Safety Shutdown
One of the device’s operational states is the safety shutdown, which is triggered when
an error occurs, allowing the device to respond to the fault. The safety shutdown state
can lead to one of two actions: device reboot or termination.

5.4.1 External Monitor Device

The TI Functional Safety Manual13 recommends using an external monitoring device for
higher SIL levels to disconnect the power supply in case of a device failure.14 Specifically,
TI advocates for an external Power Management Integrated Circuit (PMIC) suitable
for SIL-2 solutions. TI PMIC devices provide the following functionalities:

. Overvoltage and undervoltage monitoring of power resource voltage outputs.. Overvoltage monitoring of the PMIC input.. Watchdog monitoring of the safety processor.. MCU error monitoring.. MCU reset.. I2C communication with Cyclic Redundancy Check (CRC).. Error indicator to drive external circuitry.

A potential illustration of the integration between the AM243x and a Power Man-
agement Integrated Circuit (PMIC) is presented in Figure 5.14. The PMIC regulates
the AM243x power supply based on safety functions, including a Q&A watchdog that
expects periodic responses and employs Cyclic Redundancy Check (CRC) to protect
against errors. Additionally, a safety unit integrated within the AM243x can notify the
PMIC of any faults. The PMIC also supports sending interrupts to the MCU to alert

13 The internal Functional Safety Manual is under NDA. [46].
14 See points [SA_7], [SA_8], and [SA_19] in the Safety Function Manual. [46]

50



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 Safety Shutdown

it of critical conditions. While the configuration can be significantly more advanced,
this schematic aims solely to illustrate a possible implementation.

Figure 5.14. Diagram illustrates the possible connection between AM243x and the PMIC
device.

5.4.2 Safety Shutdown Process Description
There is used an external Q&A Watchdog monitor with a similar function as the de-
scribed PMIC. It monitors the device’s operation, expecting periodic confirmation that
the processor is functioning correctly. If this confirmation is not received, the watchdog
hardware disconnects the power supply, shutting down the entire device. The device
may also be powered off if an error occurs in another component communicating with
it, with this action managed by the hardware.

The external watchdog’s functionality is utilized for one type of termination: if the
device stops sending the periodic confirmation message and the error pin output15 sig-
nals a problem, the watchdog initiates a shutdown. The safety shutdown process is
straightforward, as depicted in Figure 5.15, and consists of two primary steps: storing
an error code in the flash memory’s boot info structure, specifically in the failure info
field, and executing termination based on the specific error state. When the device
boots a new image, in addition to setting an error code, the boot failure count variable
is incremented if an error occurs. The various scenarios are detailed in Table 5.3, with
corresponding error codes and descriptions listed in Table 5.2.

The safety shutdown process executes on the R0 core, as the M4 core cannot directly
modify flash memory. In the event of a failure in the M4 core, it ceases sending periodic
messages to the external watchdog based on the error code and sends a request to the
R5 core to update the flash memory.
15 MCU_SAFETY_ERRORn

51



5. Device design and architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 5.15. Diagram illustrating the device safety shutdown process.

The safety shutdown function can be triggered by errors detected during the ini-
tialization test sequence, runtime software failures, an invalid new software image, or
faults identified by the Error Signaling Module (ESM). The ESM is an independent
unit that monitors both the MAIN and MCU domains, with a dedicated ESM instance
in each domain.16 When an error is detected by the ESM, the safety shutdown process is
initiated. The ESM aggregates safety-relevant events from across the System-on-Chip
(SoC) into a single point and signals them to the R0 core via interrupts for processing.
The R0 core handles the error with the corresponding error code, as illustrated in Fig-
ure 5.15. Errors reported by the ESM are categorized into two groups: corrected faults
and non-corrected faults.17

Figure 5.16. Diagram illustrating the ESM module overview connection. The MCU_ESM0
is placed in the MCU domain, the EMS0 is placed in the MAIN domain.

A failure to initialize the device correctly typically poses no safety hazard, as it
prevents operation from commencing. The critical risk emerges when the device starts,

16 The MCU domain includes MCU_ESM0, while the MAIN domain includes ESM0.
17 A detailed description of how to work with this module is available in the Technical Reference Manual.

52



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 Initialization Test Sequence

functions normally for a period, and subsequently fails. To address this, initialization
errors trigger an automatic reboot, prompting the device to attempt a full restart. In
contrast, runtime errors lead to immediate termination, as they represent a significant
safety hazard.

Description Error Code Termination Mode

SPI initialization error 0x03 Reboot

Inter-Core communication initialization error 0x04 Reboot

Inter-Core communication runtime error 0x05 Termination

CPU resources initialization error 0x06 Reboot

Testing Initial Sequence Timeout 0x07 Reboot

ESM detected error 0x08 Termination

Undefined error 0xFF Termination

Table 5.3. This table outlines the safety shutdown states, their corresponding error codes,
and the associated termination modes.

5.5 Initialization Test Sequence

Before launching the application, an initialization test (check) sequence is executed to:

. Verify that all SIL software components function correctly.

. Validate the correct behavior of the software during an update.

The process consists of a few steps, each testing a single component. If an error
occurs, the device transitions to a safety shutdown state with the corresponding error
code, and the safety shutdown process handles the fault. The process is illustrated in
the Figure 5.17.

53



5. Device design and architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 5.17. Diagram illustrating the software initialization check process.

. CPU verification involves configuring clocks, PLL, GPIO, IPC mechanisms, memory
allocation, and other essentials. An initialization error occurs when internal checks
fail, prompting the device to enter a safety shutdown state with the appropriate
error code. This description is not entirely precise, as checks typically occur after
each initialization step. Based on the implementation, it is advisable to expand and
refine the error codes to correspond to specific issues.. The ADC verification over SPI involves initializing the SPI interface, configuring
the ADC converter, and performing a self-test. The ADC converter allows reading
values from its registers using a callback configuration. Verification is conducted by
configuring the ADC and expecting the configuration to be read back correctly. If
this fails, the process is repeated twice more (a total of three attempts). If none of
the attempts succeed, the SPI test via ADC is deemed unsuccessful.. Inter-core communication does not require a dedicated test step, as successful com-
pletion of the initialization sequence depends on its proper functioning. The entire
sequence executes on the M4 core in isolated mode. Upon completion, the M4 core
must send a message to the R5 core indicating either successful initialization or an er-
ror with the corresponding error code. If the R5 core does not receive this message
within a specified timeout period, it determines that the M4 core is malfunctioning,
and an error code is logged in the flash memory. This process is illustrated in the
Figure 5.18.

54



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6 Safe Software

Figure 5.18. Diagram illustrating the software initialization check process in the R5 core.

The success of the software update process critically depends on this initialization
sequence. These initialization checks serve as the primary mechanism for determining
whether the software update was successful.

To summarize, SIL software is considered successfully launched if:

. The X.509 certificate is valid (verified by the bootloader).. The Testing Initialization Sequence in the M4 core completes successfully.

5.6 Safe Software
The SIL component, operating on the isolated M4 core, is tasked with fulfilling safety
functions that are relatively straightforward. Its primary role is to read data from ADC
modules, evaluate the data, and send a corresponding binary signal to the Simatic PLC
via a binary output. This constitutes its core safety function. Its secondary function is
to provide the collected data to the R5 core, which uses the information for monitoring
purposes.

5.6.1 Core Isolation Description

The safety processor is separated out in its own domain called the MCU domain (safety
channel) and the rest of the SOC, which includes the application processor. MCU do-
main owns dedicated peripherals such as GPIOs, I2C, UART, SPI, interconnect, and
configuration logic. This makes sure that the M4F in the MCU channel can execute
independently using dedicated resources. After the AM243x device is booted up, the
MCU domain can be configured to be isolated from the MAIN domain. This is done
by enabling clock gating isolation. Dedicated Local Power Sleep Controller (LPSC)
controllers present in the device can provide for all clock stop control for all the trans-
actions between the MAIN domain and MCU domain. When this isolation is enabled,
any transaction from the MAIN domain will be blocked from entering the safety chan-
nel. These transactions are terminated gracefully, and the MAIN domain processor will
be notified of these violations. Note that IPC communication is not hindered by clock
gating.

55



5. Device design and architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Independent reset pins for both the MAIN and MCU domain provide flexibility to

reset the MAIN domain while the MCU domain is still active. Additionally, both the
MAIN and the MCU domain can issue a reset to the MAIN domain independently
through dedicated reset control registers, which can result in a warm reset or POR18 of
the MAIN domain. At this point, the MCU domain can function independently. The
reset of the MCU domain, however, will result in the reset of the entire device [46].

5.6.2 Process Description
The operation of the SIL core is cyclic, as illustrated in Figure 5.19. The core is
isolated, running independently of the R5 cores’ resources (MAIN domain), including
its own clock, RAM, and peripherals. The system supports separate restarts for the
MAIN domain and the MCU domain (where the isolated core operates), though this
functionality is not utilized from the perspective of the M4 core.

Figure 5.19. Diagram illustrating the process in the SIL component.

The process begins with the initialization of essential components, including the con-
figuration of clocks, PLL, peripherals, and memory resources. This sequence is part
of the Initialization Test Sequence described in Chapter 5.5. Subsequently, the Q&A
watchdog is initialized to oversee the operation of the entire device. Initially, I intended
to use a timer for its management, but this approach undermines the watchdog’s func-
tionality. It is expected that checks will be implemented in the main loop, ensuring
that in the event of software failure (e.g., jumping to undefined memory), the watchdog
responds and terminates the device. The watchdog function is described in greater
detail in Chapter 5.4.

Once all components are initialized, a loop is executed that performs the following
sequence: reading data from the SPI interface, processing the data, and evaluating its
state. The evaluation varies based on the hardware configuration, specifically depending
on the type of railway crossing and the country in which the device is deployed. Further
details on these configurations are provided in Chapter 2.6.

After evaluating the state, data is exchanged with the MAIN domain (i.e., the R5
core), which serves as a monitoring device. Data is not sent in every cycle but rather
18 Power-on Reset

56



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7 Non-SIL Software

once every 𝑛 cycles. This is because ADC data reading requires near-real-time perfor-
mance with low latency (in practice, high-speed data transfer from the ADC module via
SPI is limited due to hardware protections, such as high-impedance resistors), whereas
the monitoring device does not require real-time data. Inter-core communication is
further described in Chapter 5.8.

In the final step of the loop, a signal is sent to the Simatic PLC as a binary output.
This signal is not transmitted via serial communication but consists of simple binary
states: HIGH or LOW.

5.7 Non-SIL Software

In contrast to the SIL software, which focuses on safety-critical functions, the non-
SIL software encompasses a broader range of functionalities and operates primarily on
a single R5 core within the MAIN domain. Its responsibilities include:

. Communicating with the SIL software (i.e., the MCU domain) to acquire measured
and evaluated data.

. Running a web server to provide measured data and facilitate software updates.

. Indicating the device’s status using informational LEDs.

. Performing additional measurements to better understand the device’s state, though
these do not fulfill SIL-relevant functions.

The core runs on a real-time operating system, specifically FreeRTOS. An alternative,
Zephyr, is better suited for larger-scale projects that function as platforms,19 but its use
is not justified in the context of this project. The primary motivation for using a real-
time operating system is to optimize the operation of the web server and enable task
prioritization. Since the system runs on FreeRTOS, a decision must be made regarding
the structure of the non-SIL software.

Two general approaches exist. The first involves parallelizing all subtasks, as illus-
trated in Figure 5.20. In this scenario, each task is handled by a separate FreeRTOS
task. The advantage of this approach is the ability to prioritize certain tasks, such as
those responsible for measurements, over the web server’s operation. However, a dis-
advantage is the need to manage access to shared data.

19 It is the result of discussion with Texas Instrument engineers on the workshop.

57



5. Device design and architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 5.20. The diagram illustrates the parallel version of non-SIL software

The second approach adopts a more sequential structure, as depicted in Figure 5.21.
Here, only two main tasks are used (though more may exist, as one way to implement
the web server is to spawn a new task for each client request). One task handles the
web server, while the other manages cyclic measurement tasks. The advantage of this
approach is the minimization of shared data access, as the measurement task primarily
writes to memory, and the web server task only reads from it. A potential drawback
could be limited task prioritization. However, this is not an issue in this project,
as measurement components are prioritized over the web server. Additionally, the
measurement components are relatively simple and do not involve complex operations
in terms of code scope. For these reasons, I opted for the second approach, the more
sequential structure.

58



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7 Non-SIL Software

Figure 5.21. The diagram illustrates the sequential version of non-SIL software.

Let us examine the operation of the non-SIL software in greater detail. Upon startup,
the system performs initial configuration of data structures and FreeRTOS settings.
Additionally, it participates in the Initialization Test Sequence, specifically by echoing
back a test message for inter-core communication (IPC) verification. Following this
basic configuration, the FreeRTOS system is launched, initiating its individual tasks.

The cyclic operations are managed within the t_measuring task, with its configu-
ration performed at the task’s outset. For clarity and to illustrate the sequence of
steps cohesively, I have chosen to present the process as a unified loop. The t_mea-
suring task comprises three sequences: read_from_isolated_core, additional_measure,
and LED_information.

The read_from_isolated_core sequence handles data acquisition from the isolated
M4 core, as discussed in detail in Chapter 5.8, which covers inter-core communication.

59



5. Device design and architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 5.22. The diagram illustrates additional_measure sequence.

The additional_measure sequence aims to provide supplementary data to better iden-
tify error states and their causes. Currently, it includes one additional ADC module
measuring the voltage of a non-SIL2-relevant component, thus not safety-critical. This
sequence configures the peripheral, cyclically reads data from the ADC module, de-
codes and evaluates the data, and stores the results in a buffer. These results are made
available via the web server upon request, alongside other data. As this sequence is
non-critical, it can be executed intermittently. A sleep function pauses the sequence
for n seconds, with an estimated interval of 1 second deemed sufficient, to be finalized
during implementation.

60



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7 Non-SIL Software

Figure 5.23. The diagram illustrates LED_information sequence.

The LED_information sequence displays the device’s status using LEDs, with one
LED assigned to each ADC module connected to the M4 core. Each LED can indicate
three states across four conditions: unpowered (a), powered (b), off (c), or undefined
(d). Two LEDs are used for signaling: one lights up when the device is powered,
the other when it is off, and both illuminate for an undefined state. These states are
illustrated in Figure 5.24.

Figure 5.24. Information LED Status Illustration.

The t_web_server task delivers measured data via HTTP responses and supports
software updates. This task runs at a lower priority than the t_measuring task, which
is responsible for data acquisition. The process begins by launching the web server,
which involves configuring the Ethernet interface available on the development kit.
Once active, the web server awaits incoming requests, handling two types: a GET
request to the /data URL path, returning measured data in a JSON structure, and
a POST request to the /software URL path, initiating a software update. The update
process is detailed in Chapter 5.3. If an unknown request is received, the web server
returns an error code in the response.

61



5. Device design and architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 5.25. The diagram illustrates t_web_server task process.

As noted in the introductory discussion, the sequential approach minimizes conflicts
in accessing shared resources. The web server reads data structures populated by the
measurement sequences but does not modify them, avoiding write conflicts. The only
requirement is to ensure the web server does not return inconsistent data, such as data
being actively modified by the measurement task.

5.8 Inter-Core Communication
The device requires the capability to communicate between cores, specifically between
the isolated MCU domain and the MAIN domain, where the non-SIL software operates.
This necessitates the configuration of an inter-core communication mechanism. The
objectives of this layer are:

. To enable the transmission of measured data from the isolated M4 core to the non-SIL
R5 core for display purposes.. To facilitate the reporting of error codes and their logging in flash memory, particu-
larly during the Initialization Test Sequence (described in Chapter 5.5).

Two primary approaches are available. The AM243x device provides an IPC mecha-
nism that utilizes a mailbox system to send notifications and messages. Alternatively,
a shared memory region can be defined and used as a communication medium between
cores.

Mailbox module serves to facilitate the communication between the various on-chip
processors of the device by providing a queued mailbox-interrupt mechanism. The

62



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.8 Inter-Core Communication

queued mailbox-interrupt mechanism allows the software to establish a communica-
tion channel between two processors (users) through a set of registers and associated
interrupt signals. The module does not support the hardware protection to prevent
users from reading FIFO mailboxes that they don’t own as receiver or writing to FIFO
mailboxes that they don’t own as sender [45].

Figure 5.26. The figure illustrates inter-core communication between two processors us-
ing the AM243x mailbox system. A 32-bit message written to the MAILBOX_MES-
SAGE_y register is appended to a FIFO queue with a capacity of four messages; if the
queue is full, the message is discarded. Overflow is prevented by checking the MAIL-
BOX_FIFO_STATUS_y register to ensure the queue is not full before writing. Reading
the MAILBOX_MESSAGE_y register retrieves and removes the first message from the
queue, returning 0 if the queue is empty. A new message interrupt is triggered when at
least one message is present, with the MAILBOX_MSG_STATUS_y register indicating

the number of queued messages [45].

The alternative approach to inter-core communication is to utilize shared memory.
However, to ensure safety, memory operations must be protected. The advantages
of this approach include simpler implementation and the elimination of the need for
a dedicated subsystem. Consequently, I opted for this method, though it requires
enhancements to meet safety requirements.

Communication is designed to be unidirectional: the M4 core can access and write
to the shared memory, while the real-time R5 core is restricted to read-only access. To
prevent memory corruption due to erroneous jumps, firewall mechanisms are employed.

The AM243x device supports two primary types of firewalls: region-based and chan-
nelized. Channelized firewalls are implemented solely to protect registers controlling the
power domain and Local Power Sleep Controller (LPSC) for the security enclave, with

63



5. Device design and architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
their settings fixed and non-modifiable by users. Region-based firewalls, positioned at
the target endpoint in the interconnect, are shared by groups of target interfaces. Each
region-based firewall is configured with:

. FWID: A unique identifier for the firewall block.. Number of protected regions: Specifies the number of user-definable protected re-
gions.. Memory regions behind the firewall: Transactions targeting these regions are subject
to firewall protection.

Most memory regions in the System-on-Chip (SoC) are safeguarded by region-based
firewalls, except for the public boot ROM, debug cell, and System Trace Module
(STM).20

Memory protected by a firewall must be aligned to a 4KB boundary, with a minimum
size of 4KB. Each firewall can protect only a single memory block, preventing the
stacking of multiple firewalls [49].

The firewall is configured to permit write access exclusively to the M4 core, while
other cores, such as the R5 core, are limited to read-only access. This mechanism
ensures that the memory used by the M4 core for SIL-relevant operations, allocated in
the MAIN domain, cannot be overwritten. It also guarantees that only the M4 core
can perform writes, eliminating potential conflicts. The primary challenge is ensuring
data consistency, preventing the R5 core from reading data during a write operation,
which could result in incomplete or inconsistent values.

Multiple solutions exist to address this issue. An atomic operation, similar to those
used for modifying flash memory structures, is unnecessary in this context. Alterna-
tively, a spinlock or mutex mechanism could lock the structure during access, but this
is overly complex for the given scenario, as absolute data correctness is not required. It
suffices to discard and ignore inconsistent data, a situation expected to occur rarely due
to the rapid nature of read operations. Nevertheless, this possibility must be accounted
for.

To ensure consistency, the shared memory is organized into multiple structures. Each
structure includes an identifier at its start and end, incremented by one with each write.
Data is written sequentially, and consistency is verified if the start and end identifiers
match. This mechanism is applied to every structure.

Figure 5.27. The overview of inter-core communication shared memory.

Two primary structures are defined in the shared memory, both protected by the
described consistency mechanism. The first, illustrated in Figure 5.28, facilitates mes-
sage transmission from the M4 core to the R5 core, primarily for reporting errors or
confirming the successful completion of the Initialization Test Sequence.

Figure 5.28. The message frame of inter-core communication.

20 The device using Arm CoreSight STM with supporting logic that maps initiator IDs to specific STP
Major Source IDs.

64



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.9 Safety Mechanisms and Requirements

The second structure, depicted in Figure 5.29, transfers measured data from ADC
modules to the R5 core for reporting via its web server. This structure comprises
a header, protected by the consistency mechanism to ensure integrity, which includes
metadata about the subsequent circular buffer, such as the latest element’s ID and the
block size, in addition to integrity IDs.

Figure 5.29. The data frame of inter-core communication.

The circular buffer is updated as follows: First, the start integrity id is incremented.
Based on the latest element’s ID and block size, the system locates the oldest element.
The start position (the oldest element, typically one position behind the latest element,
except at the buffer’s end) is incremented, and the new value is written. Finally, the
end integrity id is incremented.

5.9 Safety Mechanisms and Requirements
As discussed in previous chapters, the system is divided into SIL (Safety Integrity
Level) and non-SIL components. For the SIL component, it is critical to ensure that
no unhandled error states occur. This section analyzes potential failure scenarios, their
mitigations, and the general mechanisms defined by the relevant standard that apply
to our project.

As discussed in the chapter reviewing relevant manuals (Chapter 2.3), two primary
types of faults must be addressed: systematic and random faults. Systematic faults are
mitigated through development processes and adherence to established guidelines. In
contrast, random faults, which cannot be prevented, must be managed during device
operation. The following sections primarily focus on methods for minimizing systematic
faults. Toward the end of the chapter, I will examine the techniques and features
provided by the AM243x device for addressing both fault types.

The system is designed to address safety-critical issues primarily through hardware,
leveraging inherent fail-safety mechanisms (Chapter 2.5.2). This approach enhances
maintainability and simplifies the software update process. Nevertheless, the SIL com-
ponent must operate in a safe mode. To achieve this, in addition to procedural guide-
lines, several techniques and architectural approaches are employed. As previously
mentioned, most safety requirements are addressed through inherent hardware mech-
anisms. Additionally, an external watchdog is connected to the device to monitor its
behavior, expecting a confirmation code at regular intervals. If the code is not re-
ceived, the watchdog disconnects the device from its power supply. Further details on
the watchdog’s functionality are provided in Chapter 5.4.

The standard outlines several mechanisms, discussed in Chapter 2.5.3. For this
project, the following methods relevant to the software architecture were selected:. Defensive Programming: Defined by coding standards, further detailed in Chapter

2.5.3.. Fault Detection and Diagnosis: Implemented within the railway crossing control sys-
tem by this device.. Information Encapsulation: Incorporated as part of object-oriented programming,
described in Chapter 2.5.3.. Fully Defined Interfaces: Also part of object-oriented programming, with principles
outlined in Chapter 2.5.3.

65



5. Device design and architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
From the programming techniques listed in Table 2.6, this project employs:

. Coding Standard and Coding Style Guide. No Unconditional Jumps. Limited Size and Complexity of Functions, Subroutines, and Methods. Entry/Exit Point Strategy for Functions, Subroutines, and Methods. Limited Use of Global Variables

As specified by the standard, the project is developed using a strongly typed pro-
gramming language, specifically C and C++.

For object-oriented development, the SIL component adheres to the following
standard-defined mechanisms:

. Inheritance is used only when the derived class is a refinement of its base class.. Depth of inheritance is restricted by coding standards.21. Overriding of operations (methods) is strictly controlled.. Multiple inheritance is used exclusively for interface classes.

5.9.1 TI Functional Safety Constraints and Assumptions
The TI Functional Safety Manual outlines functional safety constraints and assumptions
that, when adhered to, enable software to be classified as SIL-compliant. I aim to
highlight and discuss those constraints relevant to system design and development,
which must be followed.22

. Constraints [SA_6], [SA_7], and [SA_19] pertain to external monitoring devices, in
my case an external watchdog rather than a PMIC. The watchdog’s role is further
detailed in [SA_8], with additional information provided in Chapter 5.4.. Constraint [SA_13] addresses power requirements and a safety-critical approach,
which is fulfilled by the device’s design.. Paraphrased, [SA_20] stipulates that safety functions should only be activated af-
ter successful device initialization. This condition is met through the Initialization
Testing Sequence, described in Chapter 5.5.. Constraint [SA_22] requires the MCU domain to control the power device. This is
achieved by employing an external debugger that expects periodic messages from the
MCU domain, specifically the isolated M4 core.. Constraint [SA_25] mandates that when multiple components access the same re-
source, the SIL level must correspond to the higher requirement. This condition
is satisfied, as the device shares no resources except for shared memory used for
inter-core communication, which is adequately protected.

Other statements primarily address procedural aspects or conditions irrelevant to
this work.

5.9.2 Safety Perspective on Process Execution Analysis
To ensure the safety of processor operations, we analyze the system’s execution in detail,
dividing it into distinct phases and addressing key safety-related questions for each. For
this discussion, the system’s operation is categorized as follows:

21 In this work, I’m using the Siemens internal Coding Standard.
22 NOTE: For identification, I will use the notations from the TI manual, i.e., [SA_<number>], such as
[SA_12]. The Functional Safety Manual is under a NDA, preventing its inclusion as an appendix. To
access this document, request permission through the forms at https://www.ti.com/drr/opn/AM64X-
RESTRICTED-DOCS-SAFETY and https://www.ti.com/drr/opn/AM243X-RESTRICTED-SECURITY.

66

https://www.ti.com/drr/opn/AM64X-RESTRICTED-DOCS-SAFETY
https://www.ti.com/drr/opn/AM64X-RESTRICTED-DOCS-SAFETY
https://www.ti.com/drr/opn/AM243X-RESTRICTED-SECURITY


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.9 Safety Mechanisms and Requirements

. Booting and Initialization. Device Operation. Termination

Software Update: This is detailed in Chapter 5.3 and does not involve safety-critical
code, so it will not be further discussed here.

5.9.2.1 Booting and Initialization

. How do we ensure the software’s integrity? Each core’s image is signed with an X.509
certificate, which verifies the software’s integrity (ensuring it was not corrupted dur-
ing download) and authenticity (confirming it was signed with our private key).. How do we prevent non-SIL code from running on the SIL core or SIL code on the non-
SIL core? The AM243x incorporates an Arm Cortex-R5F and an Arm Cortex-M4F,
both utilizing the ARMv7 instruction set (specifically ARMv7-M and ARMv7-R).
These cores share identical register address spaces and are based on the same ARMv7
versions. The primary difference is that ARMv7-M architectures always include
divide instructions, whereas ARMv7-R includes them in the Thumb instruction set
but optionally in its 32-bit instruction set [50–51].

Theoretically, it might be possible to execute code intended for one core on the
other. However, successful initialization requires a core-specific sequence, ensuring
that non-SIL code (designed for the R5F core) cannot successfully execute on the
SIL M4 core, nor can SIL code execute on the non-SIL R5F core. Running incorrect
code on the safety-critical M4 core poses a significant hazard due to potential direct
safety impacts, whereas the reverse scenario (SIL code on the non-SIL core) is less
critical for our system.. How do we verify the correct configuration of the device’s clocks and PLL? Incorrect
configuration of the clocks or PLL may cause failures in components synchronized by
the clock signal, such as erroneous data reading from flash memory during the boot
phase. While this issue is not critical for our system, the priority lies with processes
running on the isolated M4 core, particularly data acquisition via SPI and inter-
core communication. Correct configuration is verified using a predefined sequence,
specifically the initial setup of the ADC via SPI on the M4 core. If the timing
is incorrect, the device will fail, and the initialization sequence will not complete
successfully. Additionally, an external debugger monitors the device during runtime
to ensure proper operation.. How do we verify the correct configuration of firewalls and communication modes? If
the cores cannot communicate with each other, the R5 core will be unable to read
data sent by the M4 core, compromising the device’s primary functionality, though
SIL functions would remain intact. The verification process is similar to the clock
and PLL case: a predefined sequence of data is transmitted between the cores in
both directions to confirm correct inter-core communication. If this communication
fails, the condition for successful processor operation, as described in the software
update process (Chapter 5.3), is not met, indicating that the code did not execute
correctly, and an error is logged in the flash memory.. How do we ensure that the CPU’s memory is properly initialized? The bootloader
loads the code into the internal RAM, and its integrity is verified using an X.509
certificate. If the certificate or the entire image is invalid, an error occurs during the
bootloader process, and this information is stored in the flash memory.. How do we verify the correct initialization of peripherals? The SIL component utilizes
only two peripherals: GPIO for sending binary signals to the Simatic PLC and SPI

67



5. Device design and architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
for communication with the ADC converter. The correct initialization of SPI is
verified through the aforementioned initialization sequence for the ADC converter’s
initial configuration. If an error occurs, it is logged in the flash memory, and the
device restarts. The functionality of GPIO pins is not verified during each device
initialization; it is only tested during manufacturing as part of the firmware loading
process.. How do we verify the correct operation of SYSFW and DMSC? The System Firmware
(SYSFW), which manages the Device Management Security Controller (DMSC), is
detailed in Chapter 5.2.1. SYSFW facilitates access to system resources, including
authentication mechanisms, inter-processor communication (IPC) for messaging and
notifications, and mechanisms for loading software from flash memory into the RAM
of individual CPUs during the boot phase. From the perspective of SIL functions,
SYSFW is not a critical component. The M4 core utilizes this layer only during its
startup and not during runtime. The bootloader, which primarily relies on SYSFW,
does not handle safety-critical code. In the event of a failure, the DMSC implements
internal mechanisms to address the error, ensuring system stability [45].

5.9.2.2 Device Operation

. How do we verify that the software performs its intended functions correctly? The
correct transmission of binary signals to the Simatic PLC is ensured through signal
duplication.

Data reading from the ADC is verified by an initial sequence, as described in the
previous section. During runtime, the ADC is not periodically rechecked. If a read
error occurs, data cannot be retrieved, triggering a transition to a safety shutdown.
In the case of a hardware failure, the hardware addresses the issue by disconnecting
the device from its power supply.

However, the proposed solution may significantly reduce EMC resilience. There-
fore, it is advisable to consider implementing a mechanism in the future that ensures
an error must occur multiple times before triggering a shutdown.

Other functions employ standard-defined approaches outlined earlier, such as de-
fensive programming, to prevent potential errors.. How do we ensure the memory operates correctly? Memory verification is not re-
quired for SIL2 compliance. However, the memory is monitored by the Internal
Diagnostic Module, as described in the hardware introduction (4.3.2). If code cor-
ruption occurs during runtime, the device addresses this by transitioning to a safe
shutdown state, performing a reboot, and reloading the RAM for all cores from flash
memory.. How do we confirm that the clocks and PLL function correctly? Unlike initialization,
long-term discrepancies during runtime on the R5 cores can be detected using the
Internal Diagnostic Module, which operates in both the MAIN and MCU domains.
This module includes the Dual Clock Comparator (MCU-DCC), which assesses the
accuracy of the clock signal during application execution. Additionally, an external
debugger detects persistent errors by expecting regular responses. If the expected
message is not received, the debugger disconnects the device from its power source,
effectively shutting it down.. How do we verify that GPIO functions correctly? In the SIL component, GPIO and
SPI are critical. SPI verification was addressed previously. For GPIO, I rely on hard-
ware protection implemented through the required combination of multiple signals to
enable positive transmission, illustrated in the Figure 5.30. Specifically, this involves

68



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.9 Safety Mechanisms and Requirements

the output from the ESM and an output from the power management unit respon-
sible for the device’s power supply. These three signals are combined in a logical
AND operation. The initial configuration is verified only during initialization, and
the software does not modify the configuration during runtime.

Figure 5.30. The schema illustrates the GPIO logical safety connection with ESM Status
Output and Power Management Unit Status Output.

. How do we ensure that firewalls and inter-CPU communication function correctly?
Firewall settings do not require runtime verification, as they are configured only
during initialization, with testing described earlier. Inter-CPU communication is
validated during initialization using predefined sequences. If the non-SIL component
does not receive a message from the isolated core within the specified deadline, it
assumes an error has occurred and transitions to a safety shutdown, which addresses
the situation.

It is necessary to consider whether the options for device termination and reboot
are sufficient. The M4 core is isolated and executes the safety function. However,
if the R5 core fails, only the monitoring and error logging to flash memory will be
affected. The question is whether such an error warrants halting railway traffic by
terminating the device. The proposed system is undoubtedly safe, but to enhance
system trustworthiness and availability, it would be advisable in the future to de-
sign a mechanism that merely notifies of the error without shutting down the entire
system.. How do we ensure secure Ethernet communication? The Ethernet network is isolated
from external access and operates within a physically secured environment to mini-
mize the risk of unauthorized access. For communication beyond the local network,
a dedicated gateway unit is used. This gateway enforces encryption standards (e.g.,
TLS) and implements secure communication protocols. To further enhance security,
HTTPS with properly configured TLS certificates should be used for all web-based
interfaces. Regular certificate rotation and the use of certificate pinning can help pre-
vent man-in-the-middle attacks. Physical access to networking equipment should be
restricted to authorized personnel only, with access controls such as locked cabinets,
surveillance, and audit logs in place.

5.9.2.3 Device Termination

. How is device termination ensured in the event of an error? Termination is achieved
through an external watchdog that expects periodic confirmation messages. If these
messages are not received, the watchdog disconnects the power supply, resulting in

69



5. Device design and architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
device termination. Thus, if the SIL core does not operate as expected, the external
hardware automatically initiates a shutdown.

The termination process is discussed in greater detail in Chapter 5.4, which describes
the safety shutdown mechanism.

5.9.3 Functional Safety Mechanism Examples
The AM243x device provides a range of mechanisms to mitigate random failures.
Some are purely hardware-based but require software activation, while others are pre-
implemented by TI, leaving the system integrator to decide whether to utilize them.
These mechanisms, along with principles for designing peripheral hardware and devel-
opment processes, are detailed in the Functional Safety Mechanism Manual.23

5.9.3.1 Access Management Using Firewalls

The interconnect subsystem incorporates firewalls, primarily at the slave termination
points, to restrict resource access to authorized masters based on their privilege ID
(privID), transaction privilege, and transaction type. Unauthorized transactions are
blocked, with writes failing to complete and reads returning zeros. Such attempts are
logged, and an error event is generated. These features can be tested through software
by initiating transactions that violate firewall permissions. This mechanism is employed
for inter-core communication and to secure shared memory, as detailed in Chapter 5.8.

5.9.3.2 Alignment Error Detection

If an Ethernet frame contains an uneven byte count (not a multiple of 8), the module
flags an Alignment Error. Error response and software requirements are defined by the
system integrator.

5.9.3.3 Auto Mode CRC Check

The Multi-Channel CRC (MCRC) Controller, when operated in Auto mode, combines
Direct Memory Access (DMA) with Cyclic Redundancy Check (CRC) calculations.
This hardware accelerator offloads the CPU, increasing its capacity for other tasks.
Additionally, it supports high-speed operations, enhancing system efficiency.

5.9.3.4 Bit Multiplexing in Memory Array

SRAM modules implement a bit multiplexing scheme, ensuring that bits forming a log-
ical word are not physically adjacent. This reduces the likelihood of physical multi-bit
faults manifesting as logical multi-bit faults, instead presenting as multiple single-bit
faults. In Single Error Correction and Double Error Detection (SECDED) SRAM,
where Error Correcting Code (ECC) corrects single-bit faults, this scheme enhances
ECC diagnostic effectiveness. Similarly, in parity SRAM, it improves parity diagnos-
tic reliability. Bit multiplexing is a mandatory architectural feature and cannot be
modified by software.

5.9.3.5 Dual Clock Comparator (DCC)

One or more Dual Clock Comparators (DCCs) are implemented as versatile safety
diagnostics to detect incorrect clock frequencies or drift between clock sources. Each
DCC consists of two counter blocks: one serves as a reference time base, and the

23 Note that this manual covers both the AM64x and AM243x processor families. The AM243x series, used
in this work, is significantly reduced in functionality. Thus, it is essential to verify that specific features
are implemented. For example, Lockstep mode is supported only on AM64x, not AM243x, despite the
presence of dual ARM R5 cores designed to enable this mode.

70



. . . . . . . . . . . . . . . . . . . . . . . . . . . 5.10 Modular Architecture and Component Design

other tests the target clock. Both reference and test clocks, as well as the expected
frequency ratio, are software-configurable. Deviations from the expected ratio trigger
an error signal to the Error Signaling Module (ESM). DCC diagnostics are disabled
by default and must be enabled via software. In our case, DCC is used to detect clock
timing errors, preventing issues such as communication failures with ADC modules or
malfunctions in internal components.

5.9.3.6 External Monitoring of MCU Safety Error Pin

The MCU_SAFETY_ERRORz pin, part of the MCU domain’s ESM, significantly en-
hances safety, as discussed in Chapter 5.4.2. This signal indicates the reset error state
of the MCU domain. An external monitor can detect expected or unexpected changes
in the reset signal’s state. Error response, diagnostic testability, and software require-
ments depend on the external monitor chosen by the system integrator. The AM243x
also supports additional external monitoring via signals such as SOC_PROC_OUT,
which indicates resets in the MAIN domain, and SYSCLKOUT and OBSCLK, which
enable monitoring of internal clock signals using external peripherals. Further external
monitoring devices, such as PMIC and watchdog, are detailed in Chapter 5.4.

5.9.3.7 Flash Authentication Protection and Flash ECC Protection

Encryption and authentication are applied to data blocks stored in attached flash mem-
ory (e.g., Hyperbus or Octal SPI). Error Correcting Code (ECC) enhances protection
against soft errors by detecting and correcting single-bit errors and detecting double-bit
errors. Flash ECC is calculated on 32-byte or 36-byte data blocks, with the block ad-
dress included in the ECC calculation for 32-byte blocks. These functions are available
only in Non-Bypass Mode.

5.9.3.8 Illegal Operation and Instruction Trapping

The Cortex-R5F processor includes diagnostics for illegal operations and instructions,
serving as safety mechanisms. Many of these traps are disabled after reset and must
be configured during R5 processor initialization. Examples include traps for illegal
instructions, floating-point underflow/overflow, floating-point division errors, and priv-
ilege violations.

The AM243x supports numerous additional safety techniques, such as Over-
temperature Warning, Information Redundancy through various approaches, and
periodic checks of memory and peripheral functionality using register readback.

5.10 Modular Architecture and Component Design

The project is not built on an existing platform, necessitating the development of all
components, including those responsible for launching the application, such as the Flash
Writer (Chapter 5.2.10) and Bootloader (Chapter 5.2.7). For clarity, the project’s com-
ponents, or modules, are described below. Each module resides in its own repository,
submodule, or subrepository within the project. The design philosophy enables in-
dependent versioning of each module, allowing new releases without impacting other
components. For instance, although both the Bootloader and non-SIL software run
on the R0 core, they are maintained in separate modules. The Bootloader is intended
to remain fixed at a single version, while the non-SIL software may undergo regular
updates.

71



5. Device design and architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 5.31. The diagram illustrates the module structure for the entire project.

The modules, along with their dependencies, are illustrated in Figure 5.31. The
following outlines each component:. Non-SIL Software: This module encompasses the non-SIL software, producing soft-

ware images for the R5 cores. Its behavior is detailed in Chapter 5.7.. Safety Software: This module contains the SIL software, generating an image for the
M4 core to fulfill safety-critical functions. Its behavior is elaborated in Chapter 5.6.. Bootloader: Operating on the R0 core, this component loads the SIL and non-
SIL software images into the CPU’s internal RAM. Its functionality is described in
Chapter 5.2.7.. Flash Writer: This module facilitates the initial software upload via Ethernet in the
factory. It collaborates with the Factory Test Runner to verify hardware functionality
post-upload, as detailed in Chapter 5.2.10.. DvpEnv: This module includes project and automation scripts to streamline devel-
opment, such as pre-commit hooks. It also contains scripts used across modules for
tasks like compiling, signing images, monitoring devices, and decoding TI Trace Logs.. Siemens SDK: This component provides pre-implemented functions from other
projects using the same hardware.. Utils (Shared Code): This module houses libraries shared across multiple components,
such as ADC module communication and communication frameworks.. TI SDK: This refers to the Texas Instruments MCU PLUS SDK for the AM243x Sitara
series. All components, except the M4 core, rely on this SDK. The M4 core uses
a custom implementation, with register configuration performed via direct register
writes, bypassing the TI SDK’s HAL layer.

5.11 Architecture Notes
The selected AM243x device does not utilize the described architecture to its full po-
tential. The software primarily runs on two cores: one isolated and one real-time.

72



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.11 Architecture Notes

To reduce costs, it could be advantageous to equip the final system with the AM2432
variant, which includes only a single pair of real-time R5 cores.

73



Chapter 6
Prototype Implementation

In this chapter, I describe the implementation and development of the prototype device,
analyzing in detail the specific challenges encountered and the solutions devised to
address them.

6.1 Prototype Specification
The objective of the implementation phase of my project was to design and develop
software for a hardware prototype intended for testing hardware components. To ac-
celerate development, software development commenced concurrently with hardware
development. The development was conducted on the previously mentioned AM243x
LaunchPad development board.

The prototype must be capable of communicating with an ADC module via SPI, man-
aging GPIO, facilitating communication between the isolated and real-time cores, and
reporting measured data via Ethernet. The prototype’s goals include enabling device
booting, establishing a development environment, and implementing device debugging.
When developing software for the isolated core, it is ideal to adhere to the guidelines
outlined in the relevant standard to simplify future safety-critical development.

6.2 Architecture Overview
The prototype’s structure comprises the main Sitara AM243x MCU and the following
components:

. XDS110: An integrated debugger used for code monitoring.. ADC Module: Communicates via SPI.. UART1 Interface: Facilitates system-level log transmission.. GPIO: In this case, directly connected to onboard LEDs, serving as a user interface.. Gateway: Transmits measured data via an Ethernet interface.

Figure 6.1. The diagram illustrates the prototype architecture overview.

The project’s software is divided into the following three components:

74



. . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Development Environment and Build System

. Flash Writer: Also referred to as Uniflash, this component handles the uploading of
firmware to flash memory. In the prototype, it uses UART for this purpose. Further
details are provided in Chapter 6.4.. Bootloader: Referred to in the implementation as SBL OSPI Multi-Partition, it
manages the boot process. Specifically, it ensures that firmware is loaded from flash
memory into the RAM of individual CPUs and verifies the X.509 certificates used to
sign software images. Further details are provided in Chapter 6.5.. System: This component includes subcomponents containing software images for
each core, responsible for managing the application’s runtime.

6.3 Development Environment and Build System

The development was built upon the TI SDK1 for AM243x and AM64x. TI recommends
using its IDE, Code Composer Studio (CCS),2 which is based on Eclipse, and also offers
a newer version called Theia,3 which is more similar to the VS Code design. Personally,
I did not use either IDE for development due to two reasons: first, I encountered issues
with missing components during installation, preventing a swift setup; second, I found
it more efficient to use a build system like CMake or Make for better portability, such
as in automated testing or pipeline builds, where a build system simplifies execution
compared to an IDE. Instead, I used Visual Studio Code for development and Makefiles
for building, which the TI SDK also employs.

However, I utilize Code Composer Studio for debugging, as it supports communica-
tion with TI’s integrated XDS110 debugger. This is discussed further in Chapter 6.6.
To ensure the project functions correctly, additional tools must be installed, on which
the system depends. These include:

. Code Composer Studio (CCS): As mentioned, it is used for debugging and is capable
of running additional tools, such as the energy monitor for measuring device power
consumption based on its activities, or installing dependencies, including drivers for
XDS110 debugger communication.. TI SysConfig: SysConfig is a configuration tool designed to simplify hardware and
software configuration challenges to accelerate software development [52]. A detailed
description is in Chapter 6.3.1.. TI ARM Clang: For software compilation, specifically version 4.0.1.4. Node.js: 5 This web server runs the SysConfig application, enabling code generation
as an API between the TI SDK and my code.. Doxygen: For generating SDK documentation.. OpenSSL: For signing software images with X.509 certificates.. Python3: For running scripts, such as flashing software via the flashwriter, decoding
SoC Trace logs, or signing software images.

1 Specifically, this refers to the mcu_plus_sdk, available at https://www.ti.com/tool/MCU-PLUS-SDK-
AM243X or in the GitHub repository https://github.com/TexasInstruments/mcupsdk-core. However, I
do not recommend using the GitHub version, as it is not regularly maintained, TI does not incorporate
GitHub Issues into its development process, and the repository lacks properly resolved dependencies,
requiring user intervention.
2 https://www.ti.com/tool/CCSTUDIO
3 https://www.ti.com/tool/download/CCSTUDIO-THEIA/1.5.1
4 Available at https://www.ti.com/tool/download/ARM-CGT-CLANG/4.0.1.LTS
5 TI specifies version 12.18.4 LTS, though I used a newer version.

75

https://www.ti.com/tool/MCU-PLUS-SDK-AM243X
https://www.ti.com/tool/MCU-PLUS-SDK-AM243X
https://github.com/TexasInstruments/mcupsdk-core
https://www.ti.com/tool/CCSTUDIO
https://www.ti.com/tool/download/CCSTUDIO-THEIA/1.5.1
https://www.ti.com/tool/download/ARM-CGT-CLANG/4.0.1.LTS


6. Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. Uniflash: 6 This component is less critical. I used it occasionally to inspect flash

memory contents.

6.3.1 System Configuration Tool (SysConfig)
An application serving as a configurator for AM243x, similar to STM32CubeMX,
providing a graphical interface for configuring hardware resources like peripherals
and clocks. However, its workflow differs significantly. While STM32CubeMX is pri-
marily used for initial C file generation and occasional reconfiguration, TI SysConfig
is employed in every build. Unlike STM32CubeMX, which generates source code
with commented sections, SysConfig produces source files not intended for developer
modification, acting as an API between the TI SDK and my code.

Figure 6.2. The screenshot illustrates multi-cores project configuration in the SysConfig
tool.

The SysConfig environment significantly saves time by eliminating the need to
study all registers in detail for testing, thereby greatly accelerating prototype devel-
opment. However, I encountered two challenges that require attention.

The AM2434 is a multi-core system, and ideally, we would want to configure all
cores within a single project. This is beneficial for tasks such as memory allocation,
inter-core communication via the IPC mechanism, and firewall configuration. Achiev-
ing this in SysConfig is not entirely straightforward. When opening the application,
you can load a configuration from a pre-existing configuration file, each specific to
a core and bearing the .syscfg extension. However, this approach will not work for
multi-core projects, as SysConfig’s graphical interface does not support opening such
projects. To address this, the application must be launched via the terminal with
a special argument that links individual configuration files. In my project, this script
is integrated into the Makefile located in the system_nortos directory.

The second limitation of the application is its inability to run two instances si-
multaneously. Practically, if you need to open the configurator for the system (all

6 https://www.ti.com/tool/UNIFLASH

76

https://www.ti.com/tool/UNIFLASH


. . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Development Environment and Build System

cores) and the bootloader concurrently to verify configurations, this is not natively
supported. The issue stems from the application running on Node-Webkit, which
does not allow multiple instances. A workaround exists: launch one instance, then
modify the unique name for a new instance in the temporary data.7 This enables
running the application in multiple windows.

6.3.2 Build Process
For building, I utilize pre-existing and modified Makefiles from the TI SDK, all or-
chestrated by a single overarching Makefile that enables the execution of the following
targets:. app: Builds the system, generating images for each core.. app-syscfg: Launches the SysConfig application for the system, configuring each

image.. bootloader: Builds the bootloader, specifically the sbl_ospi_multi_partition di-
rectory for the R5F0-0 core in my project.. bootloader-syscfg: Launches the SysConfig application for bootloader configura-
tion.. uniflash: Builds the Uniflash component, i.e., the flash writer.. uniflash-syscfg: Launches the graphical SysConfig interface for Uniflash configu-
ration.. libs: Builds the libraries included in the TI SDK.. flash: Executes a Python script to upload firmware to the board.. sysfw: Rebuilds the system firmware, required when enabling SoC Trace.. sysfw-config: Opens the graphical configuration interface for system firmware.. sbl: Rebuilds the Secondary Boot Loader (SBL), necessary when enabling SoC
Trace.. sysfw-trace-log: Parses log files obtained during SoC Trace.
The main Makefile also includes composite targets that combine individual targets,

such as all, which natively builds the entire system (excluding sysfw and sbl) and
initiates the flashing process, or build, which performs the same tasks as all but omits
the flashing step. The Makefile is designed to support parallel building for improved
efficiency.

The build process for each core’s image is defined by a Makefile specific to each
subproject. It generally consists of three steps:. Generation of Files: Creating files defined in the .syscfg file using TI SysConfig.. Compilation and Linking: Producing a binary file for the respective core. This

process also generates a .map file, which describes the device’s memory layout and
is useful for debugging memory-related errors.. Signing and Image Creation: Signing the generated binary file and creating an im-
age that includes an X.509 certificate and the binary code.

6.3.3 Build Workflow
For development purposes, the following workflow is recommended for building, up-
loading, and monitoring the device. On the AM243x LaunchPad board, it is nec-
essary to configure the UART BOOT MODE via hardware switches and power on
the device. Next, I recommend opening the UART console, accessible through the
integrated XDS110 debugger. In this mode, the ROM Code sends a “C” symbol

7 For example, change the name variable in the package.json file, located in the SysConfig installation
folder on Windows.

77



6. Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
every 2–3 seconds and, upon restart, a hash code indicating the ROM Code’s current
version. The transmission of “C” symbols confirms the correct mode selection and
functional power supply.

Figure 6.3. The image illustrates the UART BOOTMODE configuration.8

Subsequently, use the Makefile to compile all software and initiate the upload
to the device. To upload software to flash memory, the UART console monitoring
must be disabled. Then, switch the device to QSPI BOOT MODE and restart it.
I recommend performing a full system reset using the SOC_RESET_REOZ button
or resetting the M4 core, which also triggers a system-wide reset via MCU_PORZ.

Figure 6.4. The image illustrates the QSPI FLASH BOOTMODE configuration.9

During the reset, I advise reopening the terminal to display information sent by
the software to the debug console, provided debugging via UART is enabled.

6.4 Flash Writer
The Uniflash component is tasked with storing software images for individual cores
in flash memory. Data is transferred via UART using the Xmodem protocol, which
is detailed in Chapter 5.2.10. A Python script, included in the TI SDK, manages the
upload process on the PC side. This script accepts arguments that define its behavior
and influence the data layout in flash memory. For ease of configuration modification,
these arguments are specified in a file named sbl_ospi_partition.cfg, which is passed
as an argument within the Makefile. Let us examine its key components.

The argument –flash-writer=<image location> must always be defined first, speci-
fying the location of the generated software image for the Uniflash component. Next,
the bootloader’s software image location is defined, which must be placed at an offset
of 0x000000. Subsequent arguments specify the locations and offsets for each core’s
generated software image, for example, –file=<image location> –operation=flash
–flash-offset=0x280000.

8 Image source: https://software-dl.ti.com/mcu-plus-sdk/esd/AM243X/latest/exports/docs/
api_guide_am243x/GETTING_STARTED_FLASH.html.
9 Image source: https://software-dl.ti.com/mcu-plus-sdk/esd/AM243X/latest/exports/docs/

api_guide_am243x/GETTING_STARTED_FLASH.html.

78

https://software-dl.ti.com/mcu-plus-sdk/esd/AM243X/latest/exports/docs/api_guide_am243x/GETTING_STARTED_FLASH.html
https://software-dl.ti.com/mcu-plus-sdk/esd/AM243X/latest/exports/docs/api_guide_am243x/GETTING_STARTED_FLASH.html
https://software-dl.ti.com/mcu-plus-sdk/esd/AM243X/latest/exports/docs/api_guide_am243x/GETTING_STARTED_FLASH.html
https://software-dl.ti.com/mcu-plus-sdk/esd/AM243X/latest/exports/docs/api_guide_am243x/GETTING_STARTED_FLASH.html


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5 Device Booting

In this configuration, the flash memory is not erased; it is only overwritten. A
complete erase is advisable when changing the offsets of individual software images.
However, an advantage is that unchanged images do not need to be rewritten, thereby
accelerating the flashing process.

Figure 6.5. The diagram illustrates the implemented flash write process.

The entire process is illustrated in detail in Figure 6.5 and proceeds as follows:
upon starting the device in UART BOOT MODE, the ROM Code loads the flash
writer (including certificate authentication, as described in Chapter 5.2.6) into the
R5F0-0 core and executes it. The software initializes the device, specifically con-
figuring clocks, OSPI for flash communication, UART for data transfer, GPIO for
onboard LED status indication, and memory regions.

The OSPI interface uses the 4S-4D-4D protocol,10 which is supported by the
S25HL512T flash memory installed on the board, with a page size of 256 bytes.
After initializing all necessary components, the Xmodem protocol is activated, utiliz-
ing functions defined in the TI SDK. If data is received successfully, a confirmation
command is sent. If data reception fails, such as due to an overflow, an error code is
transmitted to the PC.

If an error occurs during uploading, it is displayed on the terminal via the Python
script. The most common solution is to restart the device and reattempt the upload.

6.5 Device Booting
The bootloader, referred to in the implementation as sbl_ospi_multi_partition, is
always executed first. In the prototype, its role is to initialize the system, authenticate
the X.509 certificate for each core’s software image, and load these images into the
CPU RAM for each core.

10 Four DQ signals are used during command transfer at Single Data Rate (SDR), and four DQ signals
are used during address and data transfer at Double Data Rate (DDR). Further details are available
at https://www.infineon.com/cms/en/product/memories/nor-flash/semper-nor-flash-family/
semper-nor-flash/s25hl512tfabhm010/.

79

https://www.infineon.com/cms/en/product/memories/nor-flash/semper-nor-flash-family/semper-nor-flash/s25hl512tfabhm010/
https://www.infineon.com/cms/en/product/memories/nor-flash/semper-nor-flash-family/semper-nor-flash/s25hl512tfabhm010/


6. Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 6.6. The diagram illustrates the implemented bootloader process.

The bootloader software is stored in flash memory at address 0x000000. When
configured in OSPI FLASH BOOT MODE, the ROM Code loads this memory into
the R5F0-0 CPU from this address, verifies the code’s integrity, and executes it.
Further details on this phase are provided in Chapter 5.2.6.

In the second step, the program configures the device, specifically setting clocks
and PLLs, boot addresses for individual CPUs, and OSPI communication with the
flash memory, consistent with the Flash Writer implementation described in Chapter
6.4. It also configures onboard LEDs to indicate device status and sets up UART for
both debugging via SDK logs and outputting SoC Trace.

The device then enters a loop to load software for each CPU into its RAM. Initially,
each image is parsed, and its X.509 certificate is authenticated. If the software image
passes this verification, it is loaded. If loading fails for any CPU, the process is
immediately halted, and the program does not proceed further.

Authentication and loading of software utilize functions implemented within the
TI SDK.

6.6 Debugging Device
Initially, I intended to use JTAG for debugging, which the device supports in com-
bination with a Segger J-Link. However, I abandoned this approach because I could
not find a J-Link configuration for the AM243x, and hardware modifications to the
development board would have been necessary. While the related AM64x-LP de-
velopment board supports two JTAG connections (one via the built-in XDS110 and
one unconnected), the AM243x supports only one, which is occupied by the internal
TI XDS110 debugger. In addition to standard JTAG pins (TDO, TDI, TMS, TCK,
TRSTn), the device uses EMU0 and EMU1 pins, which are supported only by the
XDS110, not the J-Link. Consequently, I opted to use the XDS110 instead of the
J-Link.

80



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.6 Debugging Device

The XDS110 is a cost-effective, entry-level debug probe designed by Texas In-
struments for debugging microcontrollers, processors, and SimpleLink devices. It
supports a wide range of TI devices through JTAG, cJTAG, and SWD/SWO inter-
faces. The probe includes features like Core Processor and System Trace via ETB,
EnergyTrace for power measurement, and support for UART and GPIO control. It
connects via a standard TI 20-pin JTAG connector and is compatible with Code
Composer Studio [53].

Figure 6.7. The image illustrates the XDS110 Built-in Debug Probe.

For operating this debugger, I utilize Code Composer Studio (CCS). Two config-
uration files with the .ccxml extension are defined in the project directory, specifying
the hardware resources monitored by the debugger. One configuration file enables
debugging, including the DMSC on the M3 core, which executes the ROM Code.
The other supports debugging without the DMSC. To initiate debugging, the spe-
cific software image must be loaded into the target core. The device’s BOOT MODE
is irrelevant for this process, though I tested only OSPI FLASH BOOT MODE and
UART BOOT MODE in this project. The debugger supports stepping through code,
accessing all device registers, and displaying debug logs within the IDE. Additionally,
the CCS debugger offers advanced multi-CPU debugging techniques, such as CPU
grouping, which allows simultaneous operations across multiple CPUs, for example,
during testing of multi-core communication.

However, the debugger operates on CMSIS-DAP, which is compatible with
OpenOCD. In the future, it would be valuable to develop a configuration file to
enable debugging directly in Visual Studio Code, the primary development environ-
ment. A challenge is that the AM243x is a multi-core device, which most debugging
environments are not designed to handle.

6.6.1 SoC Trace

The AM243x is a multi-core processor, and thus I often refer to it as a system rather
than an MCU. To debug errors at the system level, a mechanism known as SoC
Trace, also referred to as SYSFW Trace or TI Trace, is available. This method

81



6. Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
enables tracing through messages that can be converted into human-readable text.
The Trace Layer provides logs from system firmware (SYSFW) components, such as
firewalls and clocks.

SoC Trace data can be output via the UART interface. Each Texas Instruments
(TI) device uses a specific UART port. Although the AM243x is not listed in the rele-
vant documentation,11 the AM64x, which uses the same UART interface (specifically
UART1), is referenced.

Figure 6.8. The image illustrates the received log and the parsed log from SoC Trace.

To utilize this trace layer, the UART1 interface must be enabled, along with DMSC
logs in the SDK, followed by recompilation of all SYSFW files. Predefined commands
in the main Makefile can be used for this purpose.

Captured log files should be saved in the format trace-log_<number>.log in the
project’s root directory. The main Makefile includes a sysfw-trace-log target that
executes a script to translate machine-generated data into human-readable code.
The data is parsed based on specifications in the TISCI documentation,12 which
describes the entire SoC Trace Layer.

6.7 ADC
The CN0254 evaluation board with the AD7682 ADC, manufactured by Analog
Devices, was selected as the ADC module. In the final application, this module
enables the measurement of voltages from LED modules. The ADC offers 16-bit
resolution and 8 channels. For communication, the SPI interface is used, specifically
the MCSPI on the AM243x.

6.7.1 Configuration Register
The ADC supports multiple configuration and operation modes, configured via a 14-
bit register. Below, we describe the significance of each bit and the corresponding
operating modes.. [13] CFG: Determines configuration updates. A value of 0 indicates no change to

the configuration, while 1 triggers an update of the configuration register.. [12:10] Input Channel: Select the input channel mode, with five available options:. 0b00X13: Bipolar differential pairs, inputs referenced to 𝑉𝑅𝐸𝐹/2 ± 0.1𝑉.. 0x2: Bipolar, inputs referenced to 𝐶𝑂𝑀 = 𝑉𝑅𝐸𝐹/2 ± 0.1𝑉.. 0x3: Temperature sensor.. 0b10X: Unipolar differential pairs, inputs referenced to 𝐺𝑁𝐷 ± 0.1𝑉.. 0x6: Unipolar, inputs referenced to 𝐶𝑂𝑀 = 𝐺𝑁𝐷 ± 0.1𝑉.. 0x7: Unipolar, inputs referenced to 𝐺𝑁𝐷.
11 https://software-dl.ti.com/tisci/esd/latest/4_trace/trace.html#trace-uart-allocation
12 https://software-dl.ti.com/tisci/esd/latest/4_trace/trace.html#trace-debug-data-format
13 Note: X denotes “don’t care.”

82

https://software-dl.ti.com/tisci/esd/latest/4_trace/trace.html#trace-uart-allocation
https://software-dl.ti.com/tisci/esd/latest/4_trace/trace.html#trace-debug-data-format


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.7 ADC

. [9:7] Channel Count: Specify the number of channels.. [6] Bandwidth: Configures the low-pass filter bandwidth. A value of 0 sets the
bandwidth to one-quarter, while 1 enables full bandwidth.. [5:3] Reference: Define the reference voltage source, with the following options:. 0x0: Internal reference and temperature sensor enabled, using 𝑅𝐸𝐹 = 2.5𝑉

buffered output.. 0x1: Internal reference and temperature sensor enabled, using 𝑅𝐸𝐹 = 4.096𝑉
buffered output.. 0x2: External reference used, temperature sensor enabled, internal buffer dis-
abled.. 0x3: External reference used, internal buffer and temperature sensor enabled.. 0x4, 0x5: Unused and undefined.. 0x6: External reference used, internal reference, internal buffer, and temperature
sensor disabled.. 0x7: External reference used, internal buffer enabled, internal reference and
temperature sensor disabled.. [2:1] Channel Sequencer: Configure the channel sequencer, which enables cyclic

transmission of data from enabled channels. Four states are available:. 0x0: Sequencer disabled.. 0x1: Configuration updates enabled during sequencing.. 0x2: Sequencer scans values from channels 𝐼𝑁0 to 𝐼𝑁7, followed by the temper-
ature sensor.. 0x3: Sequencer scans values from channels 𝐼𝑁0 to 𝐼𝑁7, excluding the tempera-
ture sensor.. [0] Read Back: Determines whether read-back is enabled. A value of 1 sends the

register value after data transmission, while 0 disables read-back.

6.7.2 Operation Modes

The ADC module supports SPI communication in two configurations: with and
without a busy indicator. In my project, I utilize the configuration without a busy
indicator to achieve cyclic communication at a constant rate, which is illustrated
in Figure 6.9. The alternative configuration, which includes a busy indicator, is
illustrated in Figure 6.10.

Figure 6.9. The image illustrates the SPI
connection without a busy indicator.

Figure 6.10. The image illustrates the SPI
connection with a busy indicator.

The first configuration operates in SPI Mode 0, where both CPHA and CPOL are
set to 0. This means data is sampled on the rising edge, shifted out on the falling edge,
and the clock polarity in the idle state is logic low [54]. The second configuration
uses SPI Mode 3, where CPHA and CPOL are both set to 1, indicating that data is
sampled on the rising edge, shifted out on the falling edge, and the clock polarity in
the idle state is logic high [54].

83



6. Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 6.11. The image illustrates the SPI Mode 0, CPOL = 0, CPHA = 0, CLK idle state
= low, data sampled on the rising edge and shifted on the falling edge.14

The operation of the ADC module can be divided into two continuously alternating
periodic phases: acquisition and conversion. During the acquisition phase, the input
signal is sampled and stored in internal memory. In the conversion phase, the input
voltage is disconnected, and the converter transforms the measured analog value into
a digital value.

The ADC supports three operating modes: read/write during conversion (RDC),
read/write after conversion (RAC), and read/write spanning conversion (RSC). In
my implementation, I utilize the RAC mode, which is illustrated in the timing dia-
gram in Figure 6.12.

Figure 6.12. The timeline illustrates ADC SPI communication with timing in RAC opera-
tion mode without a busy indicator.15 Consonants 𝑡𝐶𝑌 𝐶, 𝑡𝐶𝑂𝑁𝑉, 𝑡𝐷𝐴𝑇 𝐴 are defined in the

Data Sheet.

In RAC mode, the device operates with the CNV (conversion) signal in a logic 1
state when no data is being written. To initiate a write operation, the CNV signal
is set to logic 0, followed by the exchange of 16 or 32 bits, depending on whether
the write-back feature is enabled in the configuration register. Afterward, the CNV
signal returns to logic 1. A two-cycle delay is required before the written configuration
takes effect. This is accounted for in the implementation, where two dummy cycles
are observed at startup to ensure proper device configuration.

6.7.3 AD7682 Driver Implementation
A dedicated driver was developed for communication with the ADC module, enabling
operation in RAC mode. The driver supports two modes. The first mode utilizes the
AM243x’s MCSPI hardware peripheral, controlled via the TI SDK. The second mode,
designed for the isolated core lacking an SPI peripheral, emulates SPI functionality
through bit-banging.

14 Image source: https://www.analog.com/en/resources/analog-dialogue/articles/introduction-
to-spi-interface.html
15 Illustration is edited Figure from AD7682 Data Sheet.

84

https://www.analog.com/en/resources/analog-dialogue/articles/introduction-to-spi-interface.html
https://www.analog.com/en/resources/analog-dialogue/articles/introduction-to-spi-interface.html


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.7 ADC

For reading values, the ADC’s sequencer is always employed. The driver can
return either raw values or values processed with a mathematical operation, providing
flexibility for future prototype testing. The ADC also supports temperature readings,
which are not interpreted by the driver. Interpreting temperature data requires
testing on a physical prototype and analyzing the measured values.

Data is stored in a structure that associates each value with a timestamp, rep-
resented in my implementation as microseconds since the device started. Overflow
is not a concern, as the timestamp uses a uint64_t type, which would require over
584,000 years of continuous operation to overflow.

During initialization, the driver performs a test to calculate the average data trans-
fer duration, which is subsequently used for precise timing. If the transfer speed
changes during operation, the implementation must be updated accordingly.

The driver also implements a self-test method to verify correct communication
with the ADC module. This test leverages the write-back feature by performing
a test configuration write, waiting for two dummy cycles, and reading the data back.
If the retrieved configuration matches the written one, the test is successful. If it
fails, I recommend repeating the test multiple times, as the test may be sent before
the ADC module is ready to respond.

6.7.4 ADC Device Usage

The objective of the implementation phase is to develop software for a hardware
prototype to be used during testing. For software development, only the AM243x,
equipped with the AM2434-ALX package, is available. Unlike the AM2434-ALV
package, which will be used in the hardware prototype, the ALX package lacks
SPI hardware peripherals in the MCU domain. Consequently, this work required
addressing this limitation. The challenge was to enable SPI functionality in the
MCU domain while minimizing the effort required for future adaptations.

After studying the issue and evaluating options, I identified several potential ap-
proaches. The first was to utilize registers available in the AM2434 to create an in-
ternal interrupt that would set a specified value on a peripheral output upon writing
to the register. This approach would allow future implementations to eliminate in-
terrupts and directly use the peripheral. However, this solution was infeasible, as
the AM243x manual revealed that the ALX package lacks SPI signals on the board.
I consulted Texas Instruments (TI) support,16 which confirmed that this approach
was not viable.

16 https://e2e.ti.com/support/microcontrollers/arm-based-microcontrollers-group/arm-based-
microcontrollers/f/arm-based-microcontrollers-forum/1510685/mcu-plus-sdk-am243x-am243x-
m4-core-spi-configuration-with-limited-uart-pins-and-internal-interrupt-routing/5825341

85

https://e2e.ti.com/support/microcontrollers/arm-based-microcontrollers-group/arm-based-microcontrollers/f/arm-based-microcontrollers-forum/1510685/mcu-plus-sdk-am243x-am243x-m4-core-spi-configuration-with-limited-uart-pins-and-internal-interrupt-routing/5825341
https://e2e.ti.com/support/microcontrollers/arm-based-microcontrollers-group/arm-based-microcontrollers/f/arm-based-microcontrollers-forum/1510685/mcu-plus-sdk-am243x-am243x-m4-core-spi-configuration-with-limited-uart-pins-and-internal-interrupt-routing/5825341
https://e2e.ti.com/support/microcontrollers/arm-based-microcontrollers-group/arm-based-microcontrollers/f/arm-based-microcontrollers-forum/1510685/mcu-plus-sdk-am243x-am243x-m4-core-spi-configuration-with-limited-uart-pins-and-internal-interrupt-routing/5825341


6. Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 6.13. The image illustrates SPI communication analyzed with the logic analyzer.

In the MCU domain of the AM243x development board, only five ports are acces-
sible. Four can be used for UART, and the fifth is reserved for an error code that can
connect to an external watchdog device. The fifth pin is unavailable, leaving only
three usable pins. Another option was to modify the UART protocol to emulate SPI
behavior. However, SPI is a synchronous bus, whereas UART is asynchronous unless
implemented as USART, which is not available on this board.

A third option was to simulate SPI behavior in software. This approach requires
significantly reduced speed, which is not a concern in this case. However, maintaining
synchronicity posed a challenge. This could potentially be addressed by configuring
PWM, but none of the four available peripherals support this functionality. I imple-
mented this software-based SPI simulation, which can be enabled via a macro acting
as a switch. However, I do not recommend its use, as it is unreliable and frequently
causes data corruption.

For the prototype with the ADC module, communication is handled through the
R5 core.

6.8 Memory Layout

Proper operation of the prototype requires careful allocation of memory space. Al-
though the application primarily uses the M4 and R5 cores, initializing the other
cores is necessary to ensure future scalability. Let us examine the memory space
allocation for the entire application in detail.

86



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.9 Monitoring Output

The memory for the R5FSS0-0 core is divided into nine regions. Region 0 is
Tightly-Coupled Memory (TCM),17 allocated to the vector table. Regions 1 and 2,
also TCM, serve as fast-access memory, allowing the CPU to access them in every
cycle. Region 4 defines the MSRAM, used as RAM for CPU operation, with a size
of 0xD0000. Region 5 corresponds to flash memory. Region 6 defines shared memory
accessible by all cores. Region 7, another shared memory region, is used to distribute
log messages from other CPUs to the R5FSS0-0 core. Region 8 defines shared memory
for inter-core communication among all cores.

Other R5 cores differ from R5FSS0-0 in that they lack defined structures for shared
memory and have a smaller MSRAM, specifically 0x10000.

The M4FSS0-0 core has only three defined regions. As it is not a real-time core, it
does not support TCM. Region 0 defines the vector table, Region 2 handles interrupts,
and Region 3 uses DRAM for memory allocation.

A detailed memory map for each core can be viewed using the compiler, which
generates it in a readable text format after linking.

6.9 Monitoring Output

6.9.1 Ethernet Configuration

To transmit data measured by the ADC module, I utilize the Ethernet port. The
AM243x board is equipped with an Ethernet switch designated as CPSW (Common
Platform Switch). One method to communicate with the Ethernet peripheral is to
use the CPSW, accessible from the MAIN domain. This subsystem supports IEEE
802.3 standard Gigabit Ethernet packet communication and can be configured as
an Ethernet switch. The CPSW interface supports both RGMII and RMII interfaces.

The second interface, which I employed in my implementation, is the Pro-
grammable Real-Time Unit and Industrial Communication Subsystem – Gigabit
(PRU-ICSSG). This programmable firmware can emulate various peripherals, in-
cluding industrial protocols such as EtherCAT, Profinet, and EtherNet/IP, as well
as Ethernet Switch or Ethernet MAC. PRU-ICSSG supports both RGMII and MII
modes.

The PRU-ICSSG runs the Industrial Communications Subsystem Ethernet Media
Access Controller (ICSS-EMAC), which acts as a driver and provides an API for
managing transmitted and received packets. The driver implements two Ethernet
ports as a switch, supporting the 802.1D standard at 100 Mbps [45].

I chose this approach to reduce the load on the main core, as the process is fully
dedicated to the PRU-ICSSG core. This choice was also driven by my personal
interest in exploring the real-time subsystem’s capabilities.

17 Tightly-Coupled Memory (TCM) provides low-latency, deterministic access for critical operations. [55].

87



6. Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 6.14. The diagram illustrates PRU-ICSSG System Decomposition [56].

The structure of the ICSS_DUAL_EMAC is illustrated in Figure 6.14. The im-
plemented application communicates with the subsystem via an API that writes data
to shared memory, specifically EMAC registers and queues. The PRU-0 and PRU-1
units read from these data structures to perform tasks such as receiving data on
a port, transmitting on a port, collecting statistics, handling errors, and updating
error counters.

For proper configuration, I recommend thoroughly studying the manual, which
provides a detailed description of the subsystem’s behavior. In my implementation,
the device is configured in DUAL MAC mode rather than as a switch. This mode
allows each port to have its own IP address, MAC address, and operate on a separate
network, achieved through software-defined network masks. I used the MII interface,
which is sufficient for my needs. For efficient data transmission and reception, I
employed DMA, supporting up to 16 messages for transmission and 32 for reception.
The MDIO module operates at a frequency of 2.2 MHz with a poll interval of 100.
The transmission speed and duplex capability are set to auto-negotiate, and the same
configuration is applied to the second interface.

To communicate with the subsystem, I2C instance 0 must also be initialized to
enable access to the EEPROM used by the subsystem.

6.9.2 TCP Server

For the server implementation, I utilized the widely adopted open-source library
lwIP, which provides a TCP/IP stack optimized for embedded systems. The device
communicates using TCP packets. The implementation is based on an open-source
example and supports both static IP address configuration and dynamic configuration
via a DHCP server. The server operates on two interfaces: NetifIdx 0 with IP address
192.168.1.200, subnet mask 255.255.255.0, and gateway 192.168.1.1; and NetifIdx 1
with IP address 10.64.1.200, subnet mask 255.255.252.0, and gateway 10.64.1.1.

88



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.10 Inter-Core Communication

The server functions straightforwardly, transmitting data stored in a shared struc-
ture via TCP packets. I chose the TCP protocol for its reliability. Leveraging lwIP
ensures that the implementation complexity remains manageable.

Figure 6.15. The diagram illustrates TCP Server Communication Flow.

Data transmission proceeds as follows: the server waits for a client to establish
a connection. Once the client requests data, the server initiates a transmission loop,
which continues until the client stops sending acknowledgments for the received data.
As the Ethernet interface does not currently support switch functionality, I do not
expect multiple devices to be connected to the network. Consequently, the server is
not optimized for multiple concurrent connections. Due to performance requirements,
the current implementation operates at approximately 70% of its capacity.18

6.10 Inter-Core Communication
In this prototype implementation, inter-core communication serves a testing purpose
to verify that all cores are correctly initialized. The structure is, however, designed to
support future implementations on a prototype where the M4 core can utilize an SPI
peripheral, as detailed in Chapter 6.7.4.

Inter-core communication occurs via shared memory, structured according to the
final implementation described in Chapter 5.8. Additionally, I specify the precise
implementation of a cyclic buffer, illustrated in Figure 6.16. The buffer begins with
a temperature value, followed by entries for the channel and timestamp indicating
when the value was measured. The circular buffer consists of this structure.

18 This value is measured using FreeRTOS.

89



6. Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 6.16. The frame illustrates one element of the cycle buffer described in Chapter 5.8.

Communication is unidirectional, eliminating the need to manage memory access
conflicts. Furthermore, no other core can write to this memory, as it is locked to all
accesses except from the R5 core, as outlined in the architecture design.

6.11 Application
The implemented application differs from the introductory illustration in Chapter 6.1
in that data is read through the R5 core instead of the M4 core. However, all neces-
sary provisions are in place for future implementations. The application is built on
FreeRTOS, which enables the execution of multiple tasks with prioritized scheduling.
Unlike the architecture design, its primary goal is not to respond to HTTP server
queries but to transmit collected data as quickly as possible for testing and analysis.
During experiments, I also implemented a web server capable of operating without
FreeRTOS, returning current data with a short history (10 samples per channel) in
JSON format. Due to the differing purpose, I utilized different data structures.

In the web server approach, communication involves a client sending an HTTP
GET request and receiving an HTTP GET response containing JSON-formatted
data. This approach benefits from shared memory, which the device can access at
any time. For my implemented purpose, however, the communication follows a “open
the floodgate and stream data” model—formally, the client sends a request and then
waits for incoming data. Accordingly, I employed a suitable structure, specifically
an xQueue in FreeRTOS, which facilitates data transfer between multiple tasks.

The application operates by launching a main task that configures the peripher-
als. Execution then splits into two tasks. The first task reads data from the ADC
converters and is designed for future use to read from cyclic shared memory and
forward data to a web server for client transmission. I deliberately separate the web
server and shared data reading, creating an API to enhance modularity and simplify
changes if multiple CPUs need to access the data. If the ADC fails to initialize
correctly, the second task, which manages the web server, is terminated. The web
server’s operation is described in detail and best illustrated in Figure 6.15.

The application provides monitoring logs output to a virtual UART0 console,
which indicate whether the ADC initialized successfully or if server-side errors oc-
curred. The server also logs its CPU load, currently at 70% during operation.19 The
goal is to transmit data as quickly as possible to monitor subtle changes. In the
final system, however, communication will likely be significantly slower due to the
physical isolation of two independent channels, as defined by the safety architecture.

The application supports communication with the M4 core via shared memory or
IPC notifications. However, this feature is disabled in the current implementation,
as it is not relevant to the present objectives.

6.12 Monitoring Utility
For monitoring purposes, I developed a Python script that operates in multiple
modes. The first mode enables storing data on the device in JSON format. In

19 This value is measured using FreeRTOS.

90



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.12 Monitoring Utility

this mode, the script acts as a client to the device’s TCP server. Initially, it sends
a packet to the IP address 192.168.1.200, requesting the transmission of additional
data. The request can be in any format, as the device only verifies the client’s con-
nection without checking the request’s content. The server then transmits data in
the same format as stored in the frame illustrated in Figure 6.16. Individual data
entries are separated by commas, and the end of the data is marked by a semicolon.
Upon receipt, the script parses the data and saves it in JSON format.

Figure 6.17. The figure displays a screenshot of the monitoring script’s output, which
enables real-time tracking of values on individual channels and the ability to enable or
disable channels. It also shows temperature data in the lower graph. Time is represented

by the number of processor ticks.

The second mode visualizes incoming data as a real-time animation while also
storing it in the same JSON format. To enable this, the communication speed must
be significantly reduced, or the script must be modified to ignore some received values
and render only every nth frame.

The third mode loads previously stored data and generates a graph. Both the
animation and graph are rendered using the Python library Matplotlib,20 which
must be installed as a dependency. The generated graph operates in an interactive
mode, allowing users to select specific channels to display.

20 https://matplotlib.org/

91

https://matplotlib.org/


6. Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.13 Implementation Challenges
During the implementation, beyond the challenge of the missing SPI module on the
M4 core, I encountered several more complex issues. I aim to demonstrate and briefly
describe them to provide inspiration for solutions in case similar problems arise.

The first issue occurred initially during X.509 certificate authentication and sub-
sequently at every device startup. Specifically, if the device ran for more than three
minutes, I was unable to successfully restart it for approximately 10–15 minutes after
a reset, even after disconnecting the power supply. After considering possible causes,
residual induced energy in the system seemed the likely culprit. While debugging,
I also discovered a flaw in the SYSFW authentication process, which I reported to
Texas Instruments. This was fixed in SDK version 11, but it did not resolve my issue.
After extensive investigation, I identified the root cause: incorrect timing configu-
ration for communication with the flash memory, likely exacerbated by component
overheating. This would explain the need to wait before the system could be used
again.

The second issue I frequently faced was combining C and C++ code. This was
partly necessitated by the SDK and lwIP being implemented in C, while the specified
requirements mandated C++ usage. Although mechanisms exist to address compat-
ibility issues, this approach caused significant complications. Ultimately, I had to
rewrite most of the code in C++, as C++ is not fully compatible with C.

During implementation, I often struggled with the compiler’s optimization behav-
ior, which sometimes reordered instructions in ways that were nonsensical or, to save
space, transformed them into loops that introduced delays. This issue was most
pronounced during software-based SPI emulation and when controlling the CNV pin
via GPIO registers in normal operation. Several solutions were considered. The
first was to disable compiler optimizations for specific code sections using pragmas
defined by the ARM-based TI Clang compiler.21 The second was to write the se-
quence directly in assembly, but this was not used, as it violates coding standards
and would be impractical for the final system. The third and preferred solution was
to leverage hardware peripherals, such as PWM or timers combined with interrupts,
to avoid reliance on compiler optimizations. Compiler instruction reordering can also
complicate debugging, so it is important to account for this issue.

21 By official TI Compiler description with "pragma FUNCTION_OPTIONS ( func, additional options
)" [57].

92



Chapter 7
Testing and Higher SIL Level Discussion

7.1 Device Testing
The project is currently at a stage where the hardware prototype is awaited, and my
practical task was to develop a software prototype for testing purposes. This thesis
minimally focuses on procedural aspects of development. However, validation and
testing of the developed system are significant components of the development cycle.
Therefore, I will briefly describe the tests most suitable for the system.

Numerous tests exist, but I will highlight those most relevant to my device, cate-
gorizing them into two groups: software testing and system testing.

7.1.1 Software Testing

Software testing aims to identify as many errors as possible during development to
prevent potential issues. According to the EN 50128 standard for my SIL 2 level,
testing is not mandatory. However, I strongly recommend it for SIL component
development. From my perspective, unit tests are particularly valuable, as they
verify the correctness of the implementation.

A unit test verifies that an implementation meets specified requirements [58]. For
example, it involves executing a function or method with known inputs and compar-
ing the output to the expected result. If the output matches, the risk of implementa-
tion errors is reduced. Unit tests are especially useful for testing edge cases, extreme
scenarios, and error conditions.

When using unit tests, pair programming and task division can be beneficial. One
person writes the unit test, specifying the expected behavior, while another imple-
ments the function or method. This approach increases the likelihood of detecting
errors if one person misunderstands the function’s purpose, as discrepancies between
the test and implementation will reveal the issue.

Other software testing methods include tools for validating memory usage, such as
Valgrind1 or Sanitizer,2 which can detect data race conditions and deadlocks, though
Sanitizer is no longer actively developed.

Software testing should also involve monitoring vulnerabilities in dependencies.
This includes tracking whether security threats emerge in third-party libraries, such
as lwIP or FreeRTOS in my case, which could pose a security risk to the software.

7.1.2 System Testing

The second type of testing is system testing, which aims to verify the device’s be-
havior within the complete system. This involves deploying the release version of the
software on the device, simulating its operation, and observing whether it performs

1 https://valgrind.org
2 https://github.com/google/sanitizers

93

https://valgrind.org
https://github.com/google/sanitizers


7. Testing and Higher SIL Level Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
according to the expected specifications. For our device, this practically means con-
trolling LED modules by turning them on and off, with the device correctly evaluating
their state and transmitting the data to a Simatic PLC.

System testing also includes stress tests, where external conditions are applied to
assess the software’s behavior. These tests are conducted not on the released software
but on a specially modified version designed to trace the logical paths taken during
execution, such as which conditional statements (e.g., if statements) determine the
program’s flow.

It is advisable for these tests to be conducted by an independent tester, as defined
by the standard, rather than the developer. This approach increases the likelihood
of detecting errors that might result from human oversight.

7.1.3 Type Testing
Additional system tests include type tests, which evaluate the device’s performance
in extreme environments that could compromise its reliability, such as high temper-
atures, vibrations, or electromagnetic compatibility (EMC) issues that may disrupt
communication or cause memory errors. The device should be resilient to these
conditions to a certain extent.

7.2 Higher SIL Level Discussion
The proposed architecture complies with SIL 2 requirements. It leverages an ar-
chitecture based on an isolated control device (our AM243x) and two independent
channels, enabling the system to achieve SIL 4 compliance. To operate at SIL 3
or higher, a fundamentally different architectural approach would be required. Ac-
cording to Texas Instruments’ Safety Manual, the AM243x can achieve SIL 3 under
specific conditions but cannot reach SIL 4. These conditions are detailed in the man-
ual’s statements. The proposed approach employs a reactive safety method, where
the device’s operation is monitored, and in case of a fault, it is transitioned to a safe
state. An alternative for achieving higher SIL levels would be to develop a plat-
form with multiple independent units that communicate with each other, utilizing
a composite safety architecture.

Generally, achieving SIL 3 or SIL 4 with the AM243x would require either two inde-
pendent units or an external watchdog device, such as an advanced PMIC discussed
in Chapter 5.4. However, higher SIL levels cannot be achieved with the AM243x
alone.

If requirements were to change to demand a higher SIL level, a comprehensive
redesign of the architecture and process allocation would be necessary, including
an evaluation of whether the device would benefit from an isolated core. An isolated
core could serve as an advanced internal watchdog, leveraging its ability to restart
independently of the MAIN domain and operate with separate power sources.

The discussed mechanisms would likely lead to the development of a platform pro-
viding safety-critical services applicable across multiple projects, rather than a single
device within a system. Developing such a platform would necessitate a different
operating system. While FreeRTOS can operate at SIL levels, a more suitable choice
for larger projects would be a real-time operating system like Zephyr.3

3 https://www.zephyrproject.org/

94

https://www.zephyrproject.org/


Chapter 8
Conclusion

The objective of this diploma thesis was to study fail-safe mechanisms defined in
the standard for achieving SIL 2 and SIL 4 levels, select suitable hardware, design
a device architecture that meets the specified requirements, implement a prototype
for testing purposes, and discuss the steps needed to achieve higher SIL levels. I de-
scribed the individual mechanisms in Chapter 2, addressed the device requirements,
hardware selection, and software architecture design in Chapters 3, 4, 5, detailed the
implementation in Chapter 6, and discussed mechanisms for verifying the implemen-
tation’s correctness and strategies for achieving higher SIL levels in Chapter 7.

The practical outcomes of my work include not only a deeper understanding of the
subject matter and comprehensive familiarity with the AM2434 processor but also
a prototype implementation that can be used to control a prototype device, verify
its properties, and establish build, booting, and flash-write processes for firmware
deployment to the device.

A limitation of my work was the inability to reliably establish SPI communication
on the isolated core of the development kit. Personally, I found little value in pur-
suing a more robust implementation using timers and interrupts, which could have
been more reliable than pure emulation, as the prototype hardware intended for the
software is expected to include this peripheral.

Throughout the project, I collaborated with Siemens Mobility, for whom I de-
veloped the prototype. I greatly value this collaboration, which was both educa-
tional and rewarding. A significant but less visible aspect of my work was studying
the architecture, behavior, and operation of the AM243x, specifically the AM2434,
whose multi-core structure is non-trivial. The collaboration provided substantial
benefits, including excellent facilities, technical support, and consultation opportu-
nities. However, it also introduced process-related challenges, primarily due to the
project’s early stage, where colleagues were simultaneously designing the hardware.
My work prompted several insights that necessitated adjustments, requiring me to
adapt throughout the thesis.

This project marked my first practical encounter with safety-critical development,
which involves studying numerous manuals and standards, frequent discussions on
the validity of design choices, and rigorous formal verification of details. While this
approach can slow progress, it offers the benefit of enabling a deep and comprehensive
understanding of the subject matter. It was also my first experience with the Texas
Instruments ecosystem and a processor with such an extensive set of peripherals that
it requires dedicated firmware to manage them.

I consider the project successful. I met all specifications and delivered software
that is not merely theoretical but has practical applications in a project that may
one day control railway crossings across Europe.

95



References
and

[1] The Future of Rail. In: Paris: IEA,
https://www.iea.org/reports/the-future-of-rail.

[2] ENERGY EFFICIENCY . In: UITP Europe, 2.
https://web.archive.org/web/20160812185814/http://www.uitp.org/s
ites/default/files/cck-focus-papers-files/Energy%20Efficiency%20-
%20Contribution%20of%20Urban%20Rail%20Systems.pdf.

[3] Jaroslav Gavenda. Česko poslalo Ukrajincům tanky z 80. let, určitě jim pomohou,
říká expert. In: Seznam Zprávy, 2022.
https://www.seznamzpravy.cz/clanek/domaci-politika-cesko-poslalo-
na-ukrajinu-tanky-z-80-let-chybet-nebudou-rika-analytik-197464.

[4] H. Haralambides. The Belt and Road Initiative. In: International Transport Fo-
rum Discussion Papers. Paris: OECD Publishing, 2020.
https://doi.org/10.1787/2281f06f-en.

[5] Rail. 2023.
https://www.iea.org/energy-system/transport/rail.

[6] Alice Lunardon, Doroteya Vladimirova, and Benedikt Boucsein. How
railway stations can transform urban mobility and the public realm: The
stakeholders’ perspective. Journal of Urban Mobility. 2023, 3 100047.
DOI https://doi.org/10.1016/j.urbmob.2023.100047.

[7] The Middle Trade and Transport Corridor: Policies and Investments to Triple
Freight Volumes and Halve Travel Time by 2030. 2023.

[8] Passenger Capacity of different Transport Modes.
https://www.transformative-mobility.org/wp-content/uploads/2023/
03/Passenger-Capacity-of-different-Transport-Modes_2021-09-08-
071924_mmuh-AQ55yh.pdf.

[9] SECURITY | English meaning - Cambridge Dictionary.
https://dictionary.cambridge.org/dictionary/english/security.

[10] SAFETY | English meaning - Cambridge Dictionary.
https://dictionary.cambridge.org/dictionary/english/safety.

[11] Xiangwan, Pooja Purohit, and M. Mueed Jamal. Case Study Eschede Train
Disaster-1998. Department of Materials Science and Engineering, The Univer-
sity Of Sheffield. March 19, 2011, 2-11.

[12] Tagging for Track Components and Artificial Vision Inventory Systems. 6 De-
cember 2023.
https://uic.org/projects-99/article/tagging-for-track-components-
and-artificial-vision-inventory-systems.

[13] Global status report on road safety 2023. In: Geneva: World Health Organization,
2023. 4. ISBN 978-92-4-008645-6.

96

https://www.iea.org/reports/the-future-of-rail
https://web.archive.org/web/20160812185814/http://www.uitp.org/sites/default/files/cck-focus-papers-files/Energy%20Efficiency%20-%20Contribution%20of%20Urban%20Rail%20Systems.pdf
https://web.archive.org/web/20160812185814/http://www.uitp.org/sites/default/files/cck-focus-papers-files/Energy%20Efficiency%20-%20Contribution%20of%20Urban%20Rail%20Systems.pdf
https://web.archive.org/web/20160812185814/http://www.uitp.org/sites/default/files/cck-focus-papers-files/Energy%20Efficiency%20-%20Contribution%20of%20Urban%20Rail%20Systems.pdf
https://www.seznamzpravy.cz/clanek/domaci-politika-cesko-poslalo-na-ukrajinu-tanky-z-80-let-chybet-nebudou-rika-analytik-197464
https://www.seznamzpravy.cz/clanek/domaci-politika-cesko-poslalo-na-ukrajinu-tanky-z-80-let-chybet-nebudou-rika-analytik-197464
https://doi.org/10.1787/2281f06f-en
https://www.iea.org/energy-system/transport/rail
http://dx.doi.org/https://doi.org/10.1016/j.urbmob.2023.100047
https://www.transformative-mobility.org/wp-content/uploads/2023/03/Passenger-Capacity-of-different-Transport-Modes_2021-09-08-071924_mmuh-AQ55yh.pdf
https://www.transformative-mobility.org/wp-content/uploads/2023/03/Passenger-Capacity-of-different-Transport-Modes_2021-09-08-071924_mmuh-AQ55yh.pdf
https://www.transformative-mobility.org/wp-content/uploads/2023/03/Passenger-Capacity-of-different-Transport-Modes_2021-09-08-071924_mmuh-AQ55yh.pdf
https://dictionary.cambridge.org/dictionary/english/security
https://dictionary.cambridge.org/dictionary/english/safety
https://uic.org/projects-99/article/tagging-for-track-components-and-artificial-vision-inventory-systems
https://uic.org/projects-99/article/tagging-for-track-components-and-artificial-vision-inventory-systems


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
https://iris.who.int/bitstream/handle/10665/374868/9789240086456-
eng.pdf.

[14] New standard EN 50716:2023 «Requirements for software development» Part
1.
https://www.csa.ch/en/blog/new-standard-en-507162023-requirement
s-for-software-development-part-1.

[15] Railway Applications - The Specification and Demonstration of Reliability, Avail-
ability, Maintainability and Safety (RAMS) - Part 1: Generic RAMS Process.
October 2017.

[16] Railway applications - Communication, signalling and processing systems -
Safety related electronic systems for signalling. November 2018.

[17] V-model. 2001-.
https://en.wikipedia.org/wiki/V-model.

[18] Mastering the V-Model: An In-Depth Guide to the V-Model SDLC .
https://teachingagile.com/sdlc/models/v-model.

[19] Railway applications Gommunication, signalling and processing systems Soft-
ware for railway control and protection systems. 2011.

[20] Common Safety Method for Risk Evaluation and Assessment.
https://www.era.europa.eu/domains/common-safety-methods/risk-
evaluation-assessment-csm_en.

[21] PLAUSIBILITY | English meaning - Cambridge Dictionary.
https://dictionary.cambridge.org/dictionary/english/plausibility.

[22] Defenzivní programování . 2001-.
https://cs.wikipedia.org/wiki/Defenzivn%C3%AD_programov%C3%A1n%C3
%AD.

[23] Joshua Bloch. Effective Java. 2nd ed ed. Upper Saddle River: Addison-Wesley,
c2008. ISBN 978-0-321-35668-0.

[24] Liming Chen, and A. Avizienis. N-VERSION PROGRAMMINC: A FAULT-
TOLERANCE APPROACH TO RELlABlLlTY OF SOFTWARE OPERAT-
lON . In: Twenty-Fifth International Symposium on Fault-Tolerant Computing,
1995, ’ Highlights from Twenty-Five Years’. 1995. 113-.

[25] Algirdas Avizienis. The Methodology of N-Version Programming. In: 1995. 23-.
[26] Difference between N-version programming and Recovery blocks Techniques.

https://www.geeksforgeeks.org/difference-between-n-version-progra
mming-and-recovery-blocks-techniques/.

[27] William Stallings. Operating Systems Internals and Design Principles. Pearson
Deutschland, 2014. ISBN 9781292061351.
https://elibrary.pearson.de/book/99.150005/9781292061948.

[28] Graceful Degradation in Distributed Systems.
https://www.geeksforgeeks.org/graceful-degradation-in-distribute
d-systems/.

[29] C. Michael Holloway. WHY ENGINEERS SHOULD CONSIDER FORMAL
METHODS. To appear in the Proceedings of the 16th Digital Avionics Systems
Conference. October 1997

[30] H. Bekic. The meaning of names in PL/I . In: C. B. Jones, eds. Programming
Languages and Their Definition: H. Bekic (1936–1982). Berlin, Heidelberg:

97

https://iris.who.int/bitstream/handle/10665/374868/9789240086456-eng.pdf
https://iris.who.int/bitstream/handle/10665/374868/9789240086456-eng.pdf
https://www.csa.ch/en/blog/new-standard-en-507162023-requirements-for-software-development-part-1
https://www.csa.ch/en/blog/new-standard-en-507162023-requirements-for-software-development-part-1
https://en.wikipedia.org/wiki/V-model
https://teachingagile.com/sdlc/models/v-model
https://www.era.europa.eu/domains/common-safety-methods/risk-evaluation-assessment-csm_en
https://www.era.europa.eu/domains/common-safety-methods/risk-evaluation-assessment-csm_en
https://dictionary.cambridge.org/dictionary/english/plausibility
https://cs.wikipedia.org/wiki/Defenzivn%C3%AD_programov%C3%A1n%C3%AD
https://cs.wikipedia.org/wiki/Defenzivn%C3%AD_programov%C3%A1n%C3%AD
https://www.geeksforgeeks.org/difference-between-n-version-programming-and-recovery-blocks-techniques/
https://www.geeksforgeeks.org/difference-between-n-version-programming-and-recovery-blocks-techniques/
https://elibrary.pearson.de/book/99.150005/9781292061948
https://www.geeksforgeeks.org/graceful-degradation-in-distributed-systems/
https://www.geeksforgeeks.org/graceful-degradation-in-distributed-systems/


References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Springer Berlin Heidelberg, 1984. 4–16. ISBN 978-3-540-38933-0.
https://doi.org/10.1007/BFb0048936.

[31] Russel Kenley, and Toby Harfield. Location Breakdown Structure (LBS): a so-
lution for construction project management data redundancy. Swinburne Uni-
versity of Technology.

[32] The official handbook of MASCOT . VERSION 3.1 ed. Worcestershire: Joint
IECCA and MUF Committee on Mascot (JIMCOM), JUNE 1987.
http://async.org.uk/Hugo.Simpson/MASCOT-3.1-Manual-June-1987.pdf.

[33] Tutorial on JSP & JSD.
https://web.archive.org/web/20061121182445/http://cisx2.uma.
maine.edu/NickTemp/JSP%26JSDLec/jsd.html.

[34] Texas Instruments. AM335x Sitara™ Processors Datasheet. 2023.
https://www.ti.com/lit/ds/symlink/am3358.pdf.

[35] STMicroelectronics. STM32MP157 Datasheet. 2023.
https://www.st.com/resource/en/datasheet/stm32mp157.pdf.

[36] NXP Semiconductors. i.MX RT1060 Crossover Processor Datasheet. 2022.
https://www.nxp.com/docs/en/data-sheet/IMXRT1060IEC.pdf.

[37] Microchip Technology. SAM E70 Series Datasheet. 2021.
https://ww1.microchip.com/downloads/en/DeviceDoc/SAM-E70-Datashee
t-DS60001527E.pdf.

[38] Texas Instruments AM335x Arm® Cortex™-A8 MPUs. 2025.
https://eu.mouser.com/new/texas-instruments/ti-am335x/.

[39] LP-AM243 | AM243x general purpose LaunchPad™ development kit for Arm®-
based MCU . 1995-2025.
https://www.ti.com/tool/LP-AM243.

[40] Technical Reference Manual Cortex -R5. 2010.
https://documentation-service.arm.com/static/5f04288cdbdee951c1cd
8969.

[41] Functional Safety for AM2x and Hercules™ Microcontrollers - Product
Overview. 2023.
https://www.ti.com/lit/po/sprt767/sprt767.pdf?ts=1745564392534.

[42] CN0254 Evaluation Board Guide. 2021.
https://wiki.analog.com/resources/eval/user-guides/circuits-from-
the-lab/CN0254.

[43] Understanding the bootflow and bootloaders. 2025.
https://software-dl.ti.com/mcu-plus-sdk/esd/AM243X/latest/export
s/docs/api_guide_am243x/BOOTFLOW_GUIDE.html.

[44] SA2UL.
https://software-dl.ti.com/mcu-plus-sdk/esd/AM243X/latest/export
s/docs/api_guide_am243x/SECURITY_SA2UL_MODULE_PAGE.html.

[45] AM64x /AM243x Processors Silicon Revision 2.0 Texas Instruments Families
of Products. OCTOBER 2023.

[46] AM64x, AM243x Functional Safety Manual. 2024.
[47] P1478R8: Byte-wise atomic memcpy.

https://www.open-std.org/JTC1/SC22/WG21/docs/papers/2022/p1478r8.
html.

98

https://doi.org/10.1007/BFb0048936
http://async.org.uk/Hugo.Simpson/MASCOT-3.1-Manual-June-1987.pdf
https://web.archive.org/web/20061121182445/http://cisx2.uma.maine.edu/NickTemp/JSP%26JSDLec/jsd.html
https://web.archive.org/web/20061121182445/http://cisx2.uma.maine.edu/NickTemp/JSP%26JSDLec/jsd.html
https://www.ti.com/lit/ds/symlink/am3358.pdf
https://www.st.com/resource/en/datasheet/stm32mp157.pdf
https://www.nxp.com/docs/en/data-sheet/IMXRT1060IEC.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/SAM-E70-Datasheet-DS60001527E.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/SAM-E70-Datasheet-DS60001527E.pdf
https://eu.mouser.com/new/texas-instruments/ti-am335x/
https://www.ti.com/tool/LP-AM243
https://documentation-service.arm.com/static/5f04288cdbdee951c1cd8969
https://documentation-service.arm.com/static/5f04288cdbdee951c1cd8969
https://www.ti.com/lit/po/sprt767/sprt767.pdf?ts=1745564392534
https://wiki.analog.com/resources/eval/user-guides/circuits-from-the-lab/CN0254
https://wiki.analog.com/resources/eval/user-guides/circuits-from-the-lab/CN0254
https://software-dl.ti.com/mcu-plus-sdk/esd/AM243X/latest/exports/docs/api_guide_am243x/BOOTFLOW_GUIDE.html
https://software-dl.ti.com/mcu-plus-sdk/esd/AM243X/latest/exports/docs/api_guide_am243x/BOOTFLOW_GUIDE.html
https://software-dl.ti.com/mcu-plus-sdk/esd/AM243X/latest/exports/docs/api_guide_am243x/SECURITY_SA2UL_MODULE_PAGE.html
https://software-dl.ti.com/mcu-plus-sdk/esd/AM243X/latest/exports/docs/api_guide_am243x/SECURITY_SA2UL_MODULE_PAGE.html
https://www.open-std.org/JTC1/SC22/WG21/docs/papers/2022/p1478r8.html
https://www.open-std.org/JTC1/SC22/WG21/docs/papers/2022/p1478r8.html


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[48] What does 8-N-1 mean? 1999.

https://www.modemhelp.net/faqs/8n1.shtml.
[49] FIREWALL | AM243x MCU+ SDK 11.00.00. 2024.

https://software-dl.ti.com/mcu-plus-sdk/esd/AM243X/latest/export
s/docs/api_guide_am243x/DRIVERS_FIREWALL_PAGE.html.

[50] Arm® v7-M Architecture. 2021.
https://developer.arm.com/documentation/ddi0403/latest/.

[51] ARM® Architecture ARMv7-A and ARMv7-R edition. 2018.
https://developer.arm.com/documentation/ddi0406/latest.

[52] SYSCONFIG. 2025.
https://www.ti.com/tool/SYSCONFIG.

[53] XDS110 Debug Probe. September 19 2024.
https://software-dl.ti.com/ccs/esd/documents/xdsdebugprobes/
emu_xds110.html.

[54] Piyu Dhaker. Introduction to SPI Interface. 2018.
https://www.analog.com/en/resources/analog-dialogue/articles/
introduction-to-spi-interface.html.

[55] Tightly Coupled Memory.
https://developer.arm.com/documentation/den0042/a/Tightly-Couple
d-Memory.

[56] ICSS DUAL EMAC FIRMWARE DESIGN GUIDE . January 14, 2020.
https://git.ti.com/cgit/processor-sdk/pdk/plain/packages/ti/drv/
icss_emac/firmware/icss_dualemac/docs/ICSS_DUAL_EMAC_Firmware_Des
ign_Guide.pdf.

[57] ARMOptimizing C/C++ Compiler v18.1.0.LTS . January 2018.
https://www.ti.com/lit/ug/spnu151r/spnu151r.pdf.

[58] Unit testing. 2001-.
https://cs.wikipedia.org/wiki/Unit_testing.

99

https://www.modemhelp.net/faqs/8n1.shtml
https://software-dl.ti.com/mcu-plus-sdk/esd/AM243X/latest/exports/docs/api_guide_am243x/DRIVERS_FIREWALL_PAGE.html
https://software-dl.ti.com/mcu-plus-sdk/esd/AM243X/latest/exports/docs/api_guide_am243x/DRIVERS_FIREWALL_PAGE.html
https://developer.arm.com/documentation/ddi0403/latest/
https://developer.arm.com/documentation/ddi0406/latest
https://www.ti.com/tool/SYSCONFIG
https://software-dl.ti.com/ccs/esd/documents/xdsdebugprobes/emu_xds110.html
https://software-dl.ti.com/ccs/esd/documents/xdsdebugprobes/emu_xds110.html
https://www.analog.com/en/resources/analog-dialogue/articles/introduction-to-spi-interface.html
https://www.analog.com/en/resources/analog-dialogue/articles/introduction-to-spi-interface.html
https://developer.arm.com/documentation/den0042/a/Tightly-Coupled-Memory
https://developer.arm.com/documentation/den0042/a/Tightly-Coupled-Memory
https://git.ti.com/cgit/processor-sdk/pdk/plain/packages/ti/drv/icss_emac/firmware/icss_dualemac/docs/ICSS_DUAL_EMAC_Firmware_Design_Guide.pdf
https://git.ti.com/cgit/processor-sdk/pdk/plain/packages/ti/drv/icss_emac/firmware/icss_dualemac/docs/ICSS_DUAL_EMAC_Firmware_Design_Guide.pdf
https://git.ti.com/cgit/processor-sdk/pdk/plain/packages/ti/drv/icss_emac/firmware/icss_dualemac/docs/ICSS_DUAL_EMAC_Firmware_Design_Guide.pdf
https://www.ti.com/lit/ug/spnu151r/spnu151r.pdf
https://cs.wikipedia.org/wiki/Unit_testing




Appendix A
List of Abbreviation

ADC . Analog-to-Digital Converter
API . Application Programming Interface
CCS . Calculus of Communicating Systems
CENELEC . European Committee for Electrotechnical Standardization
CSP . Communicating Sequential Processes
DMSC . Device Management System Controller
ESM . Error Signaling Module
FMEA . Failure Modes and Effects Analysis
FTE . Faul Tree Analysis
GP . General-purpose device
HOL . Higher Order Logic
HR . Highly Recommended
HS-FS . HS-Field Securable device
HS-SE . HS-Field Enforced device
I/O . Input / Output
IPC . Inter-Processor Communication
JSD . Jackson System Development
LBMS . Location-based method
LOTOS . Language for Temporal Ordering Specification
M . Mandatory
MASCOT . Modular Approach to Software Construction Operation and Test
MCU . microcontroller
NR . Not Recommended
PLL . Phase-Locked Loop
PMIC . Power Management Integrated Circuit
R . Recommended
RAMS . Reliability, Availability, Maintainability, Safety
RBL . ROM boot
SBL . Secondary Bootloader
SIL . Safety Integrity Level
SoC . System on Chip
SSADM . Structured systems analysis and design method
SYSFW . System Firmware
TFFR . Tolerable Functional Failure Rate
THR . Tolerable Hazard Rate
TIFS . TI Foundational Security
VDM . Vienna Development Method

101


	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Motivation
	High Impact
	Strategic Importance
	Personal Motivation

	The Aim of This Thesis

	Background Research
	The Difference between Security and Safety
	Materials and Standards
	New Standard EN 50716

	RAMS
	Systematic and Random Failures
	RAMS Development Cycle
	The Five Base Questions

	Mechanisms to Achieve SIL Level
	The Principles in Developing High-integrity Software
	Architecture
	Software Architecture Technique
	Tools Classification
	Programming Technique

	Level Crossing System in CENELEC Countries

	System Requirements
	System Context
	System Specification
	Interface Specification
	Function Requirements
	Human Interfaces
	Safety
	Diagnostics
	Project Limitation

	Hazard Descriptions
	State Analysis


	Hardware
	Hardware Requirement
	Microcontroller Options
	Microcontroller Description
	The MAIN Domain
	The MCU Domain

	ADC Module Description
	Hardware design

	Device design and architecture
	System Requirements Analysis
	Booting
	ROM Boot
	SBL Boot
	Boot Modes
	Device Boot Phases
	Boot Image Format
	Detailed System Initialization Description
	Bootloader Function Description
	Flash Memory
	Pseudo-atomic Flash Update Operations
	Flash Writer Description

	Software Update Process
	Safety Shutdown
	External Monitor Device
	Safety Shutdown Process Description

	Initialization Test Sequence
	Safe Software
	Core Isolation Description
	Process Description

	Non-SIL Software
	Inter-Core Communication
	Safety Mechanisms and Requirements
	TI Functional Safety Constraints and Assumptions
	Safety Perspective on Process Execution Analysis
	Functional Safety Mechanism Examples

	Modular Architecture and Component Design
	Architecture Notes

	Prototype Implementation
	Prototype Specification
	Architecture Overview
	Development Environment and Build System
	System Configuration Tool (SysConfig)
	Build Process
	Build Workflow

	Flash Writer
	Device Booting
	Debugging Device
	SoC Trace

	ADC
	Configuration Register
	Operation Modes
	AD7682 Driver Implementation
	ADC Device Usage

	Memory Layout
	Monitoring Output
	Ethernet Configuration
	TCP Server

	Inter-Core Communication
	Application
	Monitoring Utility
	Implementation Challenges

	Testing and Higher SIL Level Discussion
	Device Testing
	Software Testing
	System Testing
	Type Testing

	Higher SIL Level Discussion

	Conclusion
	References
	List of Abbreviation

